Reputation: 25
I made a NeuralNetwork
class as follows
import numpy as np
import matplotlib.pyplot as plt
class NeuralNetwork():
def __init__(self, alpha, layer_dims):
self.alpha = alpha
self.L = len(layers_dims) - 1
self.n = {}
self.W = {}
self.b = {}
for l in range(1, len(layer_dims)):
self.n['n' + str(l)] = layer_dims[l]
self.W['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1]) / np.sqrt(layer_dims[l-1])
self.b['b' + str(l)] = np.zeros((layer_dims[l], 1))
@staticmethod
def sigmoid(z):
return 1 / (1 + np.exp(-z))
def sigmoid_derivative(self, z):
return self.sigmoid(z) * (1 - self.sigmoid(z))
@staticmethod
def relu(z):
return np.maximum(0, z)
@staticmethod
# NOT SURE WITH THIS SO JUST CHANGE LATER
def relu_derivative(z):
dadz = np.zeros(z.shape)
dadz[z > 0] = 1
return dadz
def get_cost(self, Y):
logprobs = Y * np.log(self.A['A' + str(self.L)]) + (1 - Y) * np.log(1 - self.A['A' + str(self.L)])
return -1/self.m * np.sum(logprobs)
def forward_propagation(self, X):
self.Z = {}
self.A = {}
self.A['A0'] = X
for l in range(1, self.L):
self.Z['Z' + str(l)] = np.dot(self.W['W' + str(l)], self.A['A' + str(l-1)]) + self.b['b' + str(l)]
self.A['A' + str(l)] = self.relu(self.Z['Z' + str(l)])
self.Z['Z' + str(self.L)] = np.dot(self.W['W' + str(self.L)], self.A['A' + str(self.L-1)]) + self.b['b' + str(self.L)]
self.A['A' + str(self.L)] = self.sigmoid(self.Z['Z' + str(self.L)])
def backward_propagation(self, Y):
self.dZ = {}
self.dA = {}
self.dW = {}
self.db = {}
self.dA['dA' + str(self.L)] = -Y/self.A['A' + str(self.L)] + (1-Y)/(1-self.A['A' + str(self.L)])
self.dZ['dZ' + str(self.L)] = self.dA['dA' + str(self.L)] * self.sigmoid_derivative(self.Z['Z' + str(self.L)])
self.dW['dW' + str(self.L)] = 1/self.m * np.dot(self.dZ['dZ' + str(self.L)], self.A['A' + str(self.L-1)].T)
self.db['db' + str(self.L)] = 1/self.m * np.sum(self.dZ['dZ' + str(self.L)], axis=1, keepdims=True)
for l in reversed(range(1, self.L)):
self.dA['dA' + str(l)] = np.dot(self.W['W' + str(l + 1)].T, self.dZ['dZ' + str(l + 1)])
self.dZ['dZ' + str(l)] = self.dA['dA' + str(l)] * self.relu_derivative(self.Z['Z' + str(l)])
self.dW['dW' + str(l)] = 1/self.m * np.dot(self.dZ['dZ' + str(l)], self.A['A' + str(l-1)].T)
self.db['db' + str(l)] = 1/self.m * np.sum(self.dZ['dZ' + str(l)], axis=1, keepdims=True)
def update_parameters(self):
for l in range(1, self.L+1):
self.W['W' + str(l)] = self.W['W' + str(l)] - self.alpha * self.dW['dW' + str(l)]
self.b['b' + str(l)] = self.b['b' + str(l)] - self.alpha * self.db['db' + str(l)]
def train(self, X_train, y_train, max_iters):
self.m = X_train.shape[-1]
self.costs = []
for _ in range(max_iters):
self.forward_propagation(X_train)
self.backward_propagation(y_train)
self.update_parameters()
self.costs.append(self.get_cost(y_train))
print(f'Training done! Loss after {max_iters} iterations: {self.costs[-1]}')
def predict(self, X_test):
self.forward_propagation(X_test)
y_pred = self.sigmoid(self.A['A' + str(self.L)])
y_pred[y_pred >= 0.5] = 1
y_pred[y_pred < 0.5] = 0
return y_pred
def plot_cost(self):
plt.figure(dpi=100)
plt.plot(self.costs)
plt.show()
where layer_dims
is [n_x, n_h1, n_h2, ..., n_y]
. I did try testing forward_propagation
and backward_propagation
and they do work fine. I also tried different types of parameter initialization but to no avail. Whenever I predict new results, they all get the same probabilities. What's wrong with my code? What did I miss?
The shape of X_train
is (n_x, m)
, whereas the shape of y_train
is (n_y, m)
.
Upvotes: 0
Views: 79
Reputation: 1232
Notice that you have applied sigmoid activation both in forward propagation and predict. That would be problematic, because the outputs of 2 nested sigmoid will always be no less than 0.5.
Upvotes: 1