Reputation: 369
I'm new to PyTorch & going through the PyTorch object detection documentation tutorial pytorch docx. At their collab version, I made the below changes to add some transformation techniques.
__getitem__
method of class PennFudanDataset(torch.utils.data.Dataset)if self.transforms is not None:
img = self.transforms(img)
target = T.ToTensor()(target)
return img, target
In actual documentation it is
if self.transforms is not None:
img, target = self.transforms(img, target)
Secondly, at the get_transform(train)
function.
def get_transform(train):
if train:
transformed = T.Compose([
T.ToTensor(),
T.GaussianBlur(kernel_size=5, sigma=(0.1, 2.0)),
T.ColorJitter(brightness=[0.1, 0.2], contrast=[0.1, 0.2], saturation=[0, 0.2], hue=[0,0.5])
])
return transformed
else:
return T.ToTensor()
**In the documentation it is-**
def get_transform(train):
transforms = []
transforms.append(T.ToTensor())
if train:
transforms.append(T.RandomHorizontalFlip(0.5))
return T.Compose(transforms)
While implementing the code, I'm getting the below error. I'm not able to get what I',m doing wrong.
TypeError: Caught TypeError in DataLoader worker process 0.
Original Traceback (most recent call last):
File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/worker.py", line 198, in _worker_loop
data = fetcher.fetch(index)
File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/fetch.py", line 44, in fetch
data = [self.dataset[idx] for idx in possibly_batched_index]
File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/fetch.py", line 44, in <listcomp>
data = [self.dataset[idx] for idx in possibly_batched_index]
File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/dataset.py", line 272, in __getitem__
return self.dataset[self.indices[idx]]
File "<ipython-input-41-94e93ff7a132>", line 72, in __getitem__
target = T.ToTensor()(target)
File "/usr/local/lib/python3.6/dist-packages/torchvision/transforms/transforms.py", line 104, in __call__
return F.to_tensor(pic)
File "/usr/local/lib/python3.6/dist-packages/torchvision/transforms/functional.py", line 64, in to_tensor
raise TypeError('pic should be PIL Image or ndarray. Got {}'.format(type(pic)))
TypeError: pic should be PIL Image or ndarray. Got <class 'dict'>
Upvotes: 3
Views: 1405
Reputation: 46
I believe the Pytorch transforms only work on images (PIL images or np arrays in this case) and not labels (which are dicts according to the trace). As such, I don't think you need to "tensorify" the labels as in this line target = T.ToTensor()(target)
in the __getitem__
function.
Upvotes: 1