Reputation: 1
I have created DataFrame, Check below snippet.
data = {'mapid': [101,102],
'mapname': ['xyz','xyy'],
'xaxis' : [41,42],
'yaxis' : [42,32]
}
df = pd.DataFrame(data, columns = ['mapid', 'mapname','xaxis','yaxis'])```
Output of Dataframe.
``print(df)
mapid mapname xaxis yaxis
101 xyz 41 42
102 xyy 42 32
Here i just want to create nested dictionary from this DataFrame.
Expected output
{'101':{'mapname':'xyz'
'data' : ['xaxis' : 41,'yaxis':42]}}
I have tried below code getting expected output still i'm unable to figure it out. Please help me out here.
#Tried Snippet
**code**
print({n: grp.loc[n].to_dict('index')for n, grp in df.set_index(['mapid', 'mapname']).groupby(level='mapid')})
**output**
{101: {'xyz': {'xaxis': 41, 'yaxis': 42}}, 102: {'xyy': {'xaxis': 42, 'yaxis': 32}}}
**code**
print({k:f.groupby('mapname')['xaxis'].apply(list).to_dict() for k, f in df.groupby('mapid')})
**output**
{101: {'xyz': [41]}, 102: {'xyy': [42]}}
Upvotes: 0
Views: 61
Reputation: 88
You cannot have ['xaxis' : 41,'yaxis':42]
as it has to be a dictionary. I assume you mean
{"101": {"mapname": "xyz", "data": {"xaxis": 41, "yaxis": 42}}}
Probably not the best solution but
{i:{"mapname": j,"data":k} for (i,j),k in df.set_index(["mapid","mapname"]).to_dict(orient="index").items()}
seems to work
Upvotes: 1