Reputation: 9414
I have dataset that includes categorial column for education level the initial values was 0,nan, high school, graduate school, university I have cleaned the data and convert it to the following values
0-> others 1-> high school 2-> graduate school 3-> university
in the same column, now I want to hot encode this column to 4 columns
I have tried to use scikit learn as following
onehot_encoder = OneHotEncoder()
onehot_encoded = onehot_encoder.fit_transform(df_csv['EDUCATION'])
print(onehot_encoded)
and I got this error
ValueError: Expected 2D array, got 1D array instead:
array=[3 3 3 ... 3 1 3].
Reshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample.
Upvotes: 0
Views: 687
Reputation: 1263
For your specific case, if you reshape the underlying array (along with setting sparse=False
) it will give you your one-hot encoded array:
import pandas as pd
from sklearn.preprocessing import OneHotEncoder
df = pd.DataFrame({'EDUCATION':['high school','high school','high school',
'university','university','university',
'graduate school', 'graduate school','graduate school',
'others','others','others']})
onehot_encoder = OneHotEncoder(sparse=False)
onehot_encoder.fit_transform(df['EDUCATION'].to_numpy().reshape(-1,1))
>>>
array([[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[0., 0., 0., 1.],
[1., 0., 0., 0.],
[1., 0., 0., 0.],
[1., 0., 0., 0.],
[0., 0., 1., 0.],
[0., 0., 1., 0.],
[0., 0., 1., 0.]])
The most straightforward approach in my opinion is using pandas.get_dummies
:
pd.get_dummies(df['EDUCATION'])
Upvotes: 1
Reputation: 7676
You need to set sparse
to False
from sklearn.preprocessing import OneHotEncoder
onehot_encoder = OneHotEncoder(sparse=False)
y_train = np.random.randint(0,4,100)[:,None]
y_train = onehot_encoder.fit_transform(y_train)
Or, you can also do something like this
from sklearn.preprocessing import LabelEncoder
from keras.utils import np_utils
y_train = np.random.randint(0,4,100)
encoder = LabelEncoder()
encoder.fit(y_train)
encoded_y = encoder.transform(y_train)
y_train = np_utils.to_categorical(encoded_y)
Upvotes: 1