Reputation: 531
I have this table:
a b c d e f 19-08-06 19-08-07 19-08-08 g h i
1 2 3 4 5 6 7 8 9 10 11 12
I have 34 columns of the date, so I want to melt the date columns to be into one column only.
How can I do this in pyhton?
Thanks in advance
Upvotes: 1
Views: 2096
Reputation: 20669
You can use pd.Series.fullmatch
to create a boolean mask for extracting date columns, then use df.melt
m = df.columns.str.fullmatch("\d{2}-\d{2}-\d{2}")
cols = df.columns[m]
df.melt(value_vars=cols, var_name='date', value_name='vals')
date vals
0 19-08-06 7
1 19-08-07 8
2 19-08-08 9
If you want to melt while keeping other columns then try this.
df.melt(
id_vars=df.columns.difference(cols), var_name="date", value_name="vals"
)
a b c d e f g h i date vals
0 1 2 3 4 5 6 10 11 12 19-08-06 7
1 1 2 3 4 5 6 10 11 12 19-08-07 8
2 1 2 3 4 5 6 10 11 12 19-08-08 9
Here I did not use value_vars=cols
as it's done implicitly
value_vars: tuple, list, or ndarray, optional
Column(s) to unpivot. If not specified, uses all columns that are
not set as id_vars.
Upvotes: 3