Reputation: 2081
I tried to transform df
into df2
. I have done it through a very patchy way using df3
, Is there a simpler and more elegant way of doing it?
library(tidyverse)
# I want to transform df
df <- tibble(id = c(1, 2, 1, 2, 1, 2),
time = c('t1', 't1', 't2', 't2', 't3', 't3'),
value = c(2, 3, 6, 4, 5, 7))
df
#> # A tibble: 6 x 3
#> id time value
#> <dbl> <chr> <dbl>
#> 1 1 t1 2
#> 2 2 t1 3
#> 3 1 t2 6
#> 4 2 t2 4
#> 5 1 t3 5
#> 6 2 t3 7
# into df2
df2 <- tibble(id = c(1, 2, 1, 2),
t = c(2, 3, 6, 4),
r = c(6, 4, 5, 7))
df2
#> # A tibble: 4 x 3
#> id t r
#> <dbl> <dbl> <dbl>
#> 1 1 2 6
#> 2 2 3 4
#> 3 1 6 5
#> 4 2 4 7
# This is how I did it, but I think it should be a better way
df3 <- df %>% pivot_wider(names_from = time, values_from = value)
b <- tibble(id = numeric(), t = numeric(), r = numeric())
for (i in 2:3){
a <- df3[,c(1,i,i+1)]
colnames(a) <- c('id', 't', 'r')
b <- bind_rows(a, b)
}
b
#> # A tibble: 4 x 3
#> id t r
#> <dbl> <dbl> <dbl>
#> 1 1 6 5
#> 2 2 4 7
#> 3 1 2 6
#> 4 2 3 4
Created on 2020-11-25 by the reprex package (v0.3.0)
Upvotes: 1
Views: 137
Reputation: 887148
We can use summarise
from dplyr
version >= 1.0. Previously, it had the constraint of returning only single observation per group. From version >= 1.0, it is no longer the case. Can return any number of rows i.e. it can be shorter or longer than the original number of rows
library(dplyr)
df %>%
group_by(id) %>%
summarise(t = value[-n()], r = value[-1], .groups = 'drop')
-output
# A tibble: 4 x 3
# id t r
# <dbl> <dbl> <dbl>
#1 1 2 6
#2 1 6 5
#3 2 3 4
#4 2 4 7
Upvotes: 1
Reputation: 388982
For each id
you can use lead
to select next value and create r
column and drop NA
rows.
library(dplyr)
df %>%
group_by(id) %>%
mutate(t = value,
r = lead(value)) %>%
na.omit() %>%
select(id, t, r)
# id t r
# <dbl> <dbl> <dbl>
#1 1 2 6
#2 2 3 4
#3 1 6 5
#4 2 4 7
Upvotes: 1