Reputation: 233
Everything is okay until I convert my image to grayscale. So the rgb's shape is (256, 256, 3)
but grayscale has (256, 256)
. When I feed it, I get that error.
network = Sequential()
network.add(Convolution2D(32, kernel_size=(3, 3),strides=1,activation='relu',input_shape=(256, 256)))
network.add(MaxPooling2D((2, 2)))
# network.add(Convolution2D(32, kernel_size=(3, 3), strides=1, activation='relu'))
# network.add(MaxPooling2D((2, 2)))
network.add(Convolution2D(64, kernel_size=(3, 3), strides=1, activation='relu'))
network.add(MaxPooling2D((2, 2)))
# network.add(Convolution2D(64, kernel_size=(3, 3), strides=1, activation='relu'))
# network.add(MaxPooling2D((2, 2)))
network.add(Convolution2D(128, kernel_size=(3, 3), strides=1, activation='relu'))
network.add(MaxPooling2D((2, 2)))
# network.add(Convolution2D(128, kernel_size=(3, 3), strides=1, activation='relu'))
# network.add(MaxPooling2D((2, 2)))
network.add(Flatten())
network.add(Dense(256, activation = 'relu'))
network.add(Dense(2, activation = 'softmax'))
checkpoint_path = os.path.join("/---------/grayscale", "weights.best.hdf5")
checkpoint = ModelCheckpoint(checkpoint_path, monitor='val_accuracy', verbose=1, save_best_only=True, mode='max')
es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=10)
callbacks_list = [checkpoint, es]
network.compile(optimizer = 'adam', loss = 'categorical_crossentropy', metrics = ['accuracy'])
Upvotes: 0
Views: 2518
Reputation: 1020
You have to feed images of shape 256x256x1 in your network.
To convert your initial x_train
into your new X_train
:
X_train=np.reshape(x_train,(x_train.shape[0], x_train.shape[1],x_train.shape[2],1))
and finally change your input_shape from input_shape=(256,256)
to input_shape=(256,256,1)
Upvotes: 1