Reputation: 351
I am trying to create a grouped bar graph using Seaborn but I am getting a bit lost in the weeds. I actually have it working but it does not feel like an elegant solution. Seaborn only seems to support clustered bar graphs when there is a binary option such as Male/Female. (https://seaborn.pydata.org/examples/grouped_barplot.html)
It does not feel right having to fall back onto matplotlib so much - using the subplots feels a bit dirty :). Is there a way of handling this completely in Seaborn?
Thanks,
Andrew
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib import rcParams
sns.set_theme(style="whitegrid")
rcParams.update({'figure.autolayout': True})
dataframe = pd.read_csv("https://raw.githubusercontent.com/mooperd/uk-towns/master/uk-towns-sample.csv")
dataframe = dataframe.groupby(['nuts_region']).agg({'elevation': ['mean', 'max', 'min'],
'nuts_region': 'size'}).reset_index()
dataframe.columns = list(map('_'.join, dataframe.columns.values))
# We need to melt our dataframe down into a long format.
tidy = dataframe.melt(id_vars='nuts_region_').rename(columns=str.title)
# Create a subplot. A Subplot makes it convenient to create common layouts of subplots.
# https://matplotlib.org/3.3.3/api/_as_gen/matplotlib.pyplot.subplots.html
fig, ax1 = plt.subplots(figsize=(6, 6))
# https://stackoverflow.com/questions/40877135/plotting-two-columns-of-dataframe-in-seaborn
g = sns.barplot(x='Nuts_Region_', y='Value', hue='Variable', data=tidy, ax=ax1)
plt.tight_layout()
plt.xticks(rotation=45, ha="right")
plt.show()
Upvotes: 1
Views: 2547
Reputation: 150735
I'm not sure why you need seaborn
. Your data is wide format, so pandas does it pretty well without the need for melting:
from matplotlib import rcParams
sns.set(style="whitegrid")
rcParams.update({'figure.autolayout': True})
fig, ax1 = plt.subplots(figsize=(12,6))
dataframe.plot.bar(x='nuts_region_', ax=ax1)
plt.tight_layout()
plt.xticks(rotation=45, ha="right")
plt.show()
Output:
Upvotes: 2