Reputation: 786
I'm creating probability assistant for Battleship game - in essence, for given game state (field state and available ships), it would produce field where all free cells will have probability of hit.
My current approach is to do a monte-carlo like computation - get random free cell, get random ship, get random ship rotation, check if this placement is valid, if so continue with next ship from available set. If available set is empty, add how the ships were set to output stack. Redo this multiple times, use outputs to compute probability of each cell.
Is there sane algorithm to process all possible ship placements for given field state?
Upvotes: 0
Views: 574
Reputation: 46507
An exact solution is possible. But does not qualify as sane in my books.
Still, here is the idea.
There are many variants of the game, but let's say that we start with a worst case scenario of 1 ship of size 5, 2 of size 4, 3 of size 3 and 4 of size 2.
The "discovered state" of the board is all spots where shots have been taken, or ships have been discovered, plus the number of remaining ships. The discovered state naively requires 100 bits for the board (10x10, any can be shot) plus 1 bit for the count of remaining ships of size 5, 2 bits for the remaining ships of size 4, 2 bits for remaining ships of size 3 and 3 bits for remaining ships of size 2. This makes 108 bits, which fits in 14 bytes.
Now conceptually the idea is to figure out the map by shooting each square in turn in the first row, the second row, and so on, and recording the game state along with transitions. We can record the forward transitions and counts to find how many ways there are to get to any state.
Then find the end state of everything finished and all ships used and walk the transitions backwards to find how many ways there are to get from any state to the end state.
Now walk the data structure forward, knowing the probability of arriving at any state while on the way to the end, but this time we can figure out the probability of each way of finding a ship on each square as we go forward. Sum those and we have our probability heatmap.
Is this doable? In memory, no. In a distributed system it might be though.
Remember that I said that recording a state took 14 bytes? Adding a count to that takes another 8 bytes which takes us to 22 bytes. Adding the reverse count takes us to 30 bytes. My back of the envelope estimate is that at any point in our path there are on the order of a half-billion states we might be in with various ships left, killed ships sticking out and so on. That's 15 GB of data. Potentially for each of 100 squares. Which is 1.5 terabytes of data. Which we have to process in 3 passes.
Upvotes: 1