Reputation: 10051
I'm trying to loop pages from this link and extract the interesting part.
Please see the contents in the red circle in the image below.
Here's what I've tried:
url = 'http://so.eastmoney.com/Ann/s?keyword=购买物业&pageindex={}'
for page in range(10):
r = requests.get(url.format(page))
soup = BeautifulSoup(r.content, "html.parser")
print(soup)
xpath for each element (might be helpful for those that don't read Chinese):
/html/body/div[3]/div/div[2]/div[2]/div[3]/h3/span --> 【润华物业】
/html/body/div[3]/div/div[2]/div[2]/div[3]/h3/a --> 润华物业:关于公司购买理财产品的公告
/html/body/div[3]/div/div[2]/div[2]/div[3]/p/label --> 2017-04-24
/html/body/div[3]/div/div[2]/div[2]/div[3]/p/span --> 公告编号:2017-019 证券代码:836007 证券简称:润华物业 主办券商:国联证券
/html/body/div[3]/div/div[2]/div[2]/div[3]/a --> http://data.eastmoney.com/notices/detail/836007/AN201704250530124271,JWU2JWI2JWE2JWU1JThkJThlJWU3JTg5JWE5JWU0JWI4JTlh.html
I need to save the output to an Excel file. How could I do that in Python? Many thanks.
Upvotes: 0
Views: 296
Reputation: 20052
BeautifulSoup
won't see this stuff, as it's rendered dynamically by JS
, but there's an API endpoint you can query to get what you're after.
Here's how:
import requests
import pandas as pd
def clean_up(text: str) -> str:
return text.replace('</em>', '').replace(':<em>', '').replace('<em>', '')
def get_data(page_number: int) -> dict:
url = f"http://searchapi.eastmoney.com/business/Web/GetSearchList?type=401&pageindex={page_number}&pagesize=10&keyword=购买物业&name=normal"
headers = {
"Referer": f"http://so.eastmoney.com/Ann/s?keyword=%E8%B4%AD%E4%B9%B0%E7%89%A9%E4%B8%9A&pageindex={page_number}",
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:83.0) Gecko/20100101 Firefox/83.0",
}
return requests.get(url, headers=headers).json()
def parse_response(response: dict) -> list:
for item in response["Data"]:
title = clean_up(item['NoticeTitle'])
date = item['NoticeDate']
url = item['Url']
notice_content = clean_up(" ".join(item['NoticeContent'].split()))
company_name = item['SecurityFullName']
print(f"{company_name} - {title} - {date}")
yield [title, url, date, company_name, notice_content]
def save_results(parsed_response: list):
df = pd.DataFrame(
parsed_response,
columns=['title', 'url', 'date', 'company_name', 'content'],
)
df.to_excel("test_output.xlsx", index=False)
if __name__ == "__main__":
output = []
for page in range(1, 11):
for parsed_row in parse_response(get_data(page)):
output.append(parsed_row)
save_results(output)
This outputs:
栖霞物业购买资产的公告 - 2019-09-03 16:00:00 - 871792
索克物业购买资产的公告 - 2020-08-17 00:00:00 - 832816
中都物业购买股权的公告 - 2019-12-09 16:00:00 - 872955
开元物业:开元物业购买银行理财产品的公告 - 2015-05-21 16:00:00 - 831971
开元物业:开元物业购买银行理财产品的公告 - 2015-04-12 16:00:00 - 831971
盛全物业:拟购买房产的公告 - 2017-10-30 16:00:00 - 834070
润华物业购买资产暨关联交易公告 - 2016-08-23 16:00:00 - 836007
润华物业购买资产暨关联交易公告 - 2017-08-14 16:00:00 - 836007
萃华珠宝:关于拟购买物业并签署购买意向协议的公告 - 2017-07-10 16:00:00 - 002731
赛意信息:关于购买办公物业的公告 - 2020-12-02 00:00:00 - 300687
And saves this to a .csv
file that can be easily handled by excel.
PS. I don't know Chinese (?) so you'd have to look into the response contents and pick more stuff out.
Upvotes: 1
Reputation: 10051
Updated answer based on @baduker's solution, but not working out for loop pages.
import requests
import pandas as pd
for page in range(10):
url = "http://searchapi.eastmoney.com/business/Web/GetSearchList?type=401&pageindex={}&pagesize=10&keyword=购买物业&name=normal"
headers = {
"Referer": "http://so.eastmoney.com/Ann/s?keyword=%E8%B4%AD%E4%B9%B0%E7%89%A9%E4%B8%9A&pageindex={}",
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:83.0) Gecko/20100101 Firefox/83.0",
}
response = requests.get(url, headers=headers).json()
output_data = []
for item in response["Data"]:
# print(item)
# print('*' * 40)
title = item['NoticeTitle'].replace('</em>', '').replace(':<em>', '').replace('<em>', '')
url = item['Url']
date = item['NoticeDate'].split(' ')[0]
company_name = item['SecurityFullName']
content = item['NoticeContent'].replace('</em>', '').replace(':<em>', '').replace('<em>', '')
# url_code = item['Url'].split('/')[5]
output_data.append([title, url, date, company_name, content])
names = ['title', 'url', 'date', 'company_name', 'content']
df = pd.DataFrame(output_data, columns = names)
df.to_excel('test.xlsx', index = False)
Upvotes: 0