Reputation: 168
I have a dataframe that looks like this
I need to adjust the time_in_weeks
column for the 34 number entry. When there is a duplicate uniqueid
with a different rma_created_date
that means there was some failure that occurred. The 34 needs to be changed to calculate the number of weeks between the new most recent rma_created_date
(2020-10-15 in this case) and subtract the rma_processed_date
of the above row 2020-06-28.
I hope that makes sense in terms of what I am trying to do.
So far I did this
def clean_df(df):
'''
This function will fix the time_in_weeks column to calculate the correct number of weeks
when there is multiple failured for an item.
'''
# Sort by rma_created_date
df = df.sort_values(by=['rma_created_date'])
Now I need to perform what I described above but I am a little confused on how to do this. Especially considering we could have multiple failures and not just 2.
I should get something like this returned as output
As you can see what happened to the 34
was it got changed to take the number of weeks between 2020-10-15
and 2020-06-26
Here is another example with more rows
Using the expression suggested
df['time_in_weeks']=np.where(df.uniqueid.duplicated(keep='first'),df.rma_processed_date.dt.isocalendar().week.sub(df.rma_processed_date.dt.isocalendar().week.shift(1)),df.time_in_weeks)
I get this
Final note: if there is a date of 1/1/1900 then don't perform any calculation.
Upvotes: 0
Views: 34
Reputation: 26676
Question not very clear. Happy to correct if I interpreted it wrongly.
Try use np.where(condition, choiceif condition, choice ifnotcondition)
#Coerce dates into datetime
df['rma_processed_date']=pd.to_datetime(df['rma_processed_date'])
df['rma_created_date']=pd.to_datetime(df['rma_created_date'])
#Solution
df['time_in_weeks']=np.where(df.uniqueid.duplicated(keep='first'),df.rma_created_date.sub(df.rma_processed_date),df.time_in_weeks)
Upvotes: 1