Reputation: 329
I need to do something quite specific and i'm trying to do it the good way , especially i want it to be optimized .
So i have a DataFrame that look like this :
│ Row │ USER_ID │ GENRE_MAIN │ ALBUM_NAME │ ALBUM_ARTIST_NAME │ TOTAL_LISTENED │ TOTAL_COUNT_LISTENED │
│ │ String │ String │ String │ String │ DecFP.Dec128 │ DecFP.Dec128 │
├──────────┼─────────┼───────────────────┼─────────────────────────────────────────────────────────────────────────────┼────────────────────────────────┼────────────────┼──────────────────────┤
│ 1 │ 9s2dsdd6 │ ROCK │ The Thought's Boy │ AARON MADISON │ 5912.0 │ 91.0 │
│ 1 │ 9s2dsdd6 │ ROCK │ The wqeqwewe │ AARON MADISON │ 3212.0 │ 91.0 │
│ 2 │ 11sdasd63 │ ROCK │ Down On The Upside │ SOUNDGARDEN │ 3354.0 │ 14.0 │
│ 3 │ 112sds334 │ CLASSICAL │ Beethoven: Symphonies Nos. 1 & 2 - C.P.E. Bach: Symphonies, Wq 175 & 183/17 │ AKADEMIE FÜR ALTE MUSIK BERLIN │ 1372.0 │ 4.0 │
│ 4 │ 145sdsd42 │ POP │ My Life in the Bush of Ghosts │ BRIAN ENO │ 3531.0 │ 17.0 │
I want to aggregate it by user (i have many rows per user_id ) and do many calculations I'm doing aggregation with this :
gdf = DataFrames.groupby(df, :USER_ID)
combine(gdf,:TOTAL_LISTENED => sum => :TOTAL_SECONDS_LISTENED,
:TOTAL_COUNT_LISTENED => sum => :TOTAL_TRACKS_LISTENED)
I need to calculate the top 1 ,2 ,3 ,4 ,5 genre, album name, artist name per user_id and it has to be like this :
USER_ID │ ALBUM1_NAME │ ALBUM2_NAME ......│ GENRE1 │ GENRE2
One line per user_id .
So i tried to do it with a countmap and then sort it , keep only the top 5 , and assign each value to a column in a Dataframe
transposed = sort(countmap(targetId[targetCol]), byvalue=true, rev=true)
for (i, g) in enumerate(eachcol(transposed))
rVal["ALBUM$(i)_NAME"] = g[1]
rVal["ALBUM$(i)_ARTIST"] = g[3]
rVal["ALBUM$(i)_TIME"] = g[2]
rVal["ALBUM$(i)_ID"] = "ID"
rVal["USER_ID"] = id
end
but it doesn't work in a combine , its just very ugly and im sure i can do it a better way .
I hope its understandable , if someone can help me please =)
Thank you
EDIT : A way to reproduce the DataFrame:
v = ["x","y","z"][rand(1:3, 10)]
df = DataFrame(Any[collect(1:10), v, rand(10)], [:USER_ID, :GENRE_MAIN, :TOTAL_LISTENED])
Upvotes: 2
Views: 88
Reputation: 69879
You have not provided an easy way to reproduce your source data, so I am writing the solution from my head and hope I have not made any typo (note that you need DataFrames.jl 0.22 for this to work, while you seem to be on some older version of the package):
using DataFrames, Pipe, Random, Pkg
Pkg.activate(".")
Pkg.add("DataFrames")
Pkg.add("Pipe")
Random.seed!(1234)
df = DataFrame(USER_ID=rand(1:10, 80),
GENRE_MAIN=rand(string.("genre_", 1:6), 80),
ALBUM_NAME=rand(string.("album_", 1:6), 80),
ALBUM_ARTIST_NAME=rand(string.("artist_", 1:6), 80))
function top5(sdf, col, prefix)
return @pipe groupby(sdf, col) |>
combine(_, nrow) |>
sort!(_, :nrow, rev=true) |>
first(_, 5) |>
vcat(_[!, 1], fill(missing, 5 - nrow(_))) |>
DataFrame([string(prefix, i) for i in 1:5] .=> _)
end
@pipe groupby(df, :USER_ID) |>
combine(_,
x -> top5(x, :GENRE_MAIN, "genre"),
x -> top5(x, :ALBUM_NAME, "album"),
x -> top5(x, :ALBUM_ARTIST_NAME, "artist"))
The code is a bit complex as we have to handle the fact that there might be less than 5 entries per group.
It produces under Julia 1.5.3:
10×16 DataFrame
Row │ USER_ID genre1 genre2 genre3 genre4 genre5 album1 album2 album3 album4 album5 artist1 artist2 artist3 artist4 artist5
│ Int64 String String String String? String? String String String String String? String String String String? String?
─────┼─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
1 │ 1 genre_1 genre_3 genre_5 genre_2 genre_4 album_3 album_5 album_6 album_1 album_4 artist_1 artist_4 artist_3 artist_2 artist_6
2 │ 4 genre_1 genre_3 genre_6 genre_2 missing album_2 album_4 album_5 album_6 missing artist_4 artist_5 artist_2 missing missing
3 │ 8 genre_2 genre_1 genre_6 genre_5 missing album_1 album_5 album_4 album_2 missing artist_5 artist_6 artist_4 artist_1 artist_3
4 │ 2 genre_1 genre_5 genre_2 genre_4 genre_3 album_6 album_3 album_4 album_2 album_1 artist_4 artist_2 artist_6 artist_1 artist_5
5 │ 10 genre_5 genre_3 genre_6 genre_4 genre_2 album_2 album_3 album_1 album_5 album_4 artist_1 artist_6 artist_2 artist_5 artist_3
6 │ 7 genre_5 genre_3 genre_2 genre_4 genre_1 album_2 album_4 album_3 album_5 missing artist_4 artist_1 artist_3 artist_5 missing
7 │ 9 genre_3 genre_4 genre_2 missing missing album_1 album_3 album_4 album_2 missing artist_4 artist_2 artist_6 artist_3 missing
8 │ 5 genre_2 genre_3 genre_4 genre_6 missing album_2 album_1 album_3 album_4 missing artist_6 artist_5 artist_4 artist_1 missing
9 │ 3 genre_6 genre_5 genre_4 genre_2 genre_1 album_3 album_4 album_1 album_5 missing artist_4 artist_3 artist_6 artist_5 missing
10 │ 6 genre_3 genre_4 genre_1 genre_6 missing album_2 album_4 album_5 album_3 missing artist_4 artist_6 artist_5 missing missing
which I assume you wanted?
Upvotes: 2