Reputation:
I ran into an interview question recently. no additional info is given into question (maybe default implementation should be used...)
n arbitrary sequences of insert and remove operations on empty min heap (location for delete element is known) has amortized cost of:
A) insert O(1), remove O(log n)
B) insert O(log n), remove O(1)
The option (B) is correct.
I'm surprized when see answer sheet. i know this is tricky, maybe empty heap, maybe knowing location of elements for delete,... i dont know why (A) is false? Why (B) is true?
Upvotes: 3
Views: 3309
Reputation: 59358
Because the heap is initially empty, you can't have more deletes than inserts.
An amortized cost of O(1) per deletion and O(log N) per insertion is exactly the same as an amortized cost of O(log N) for both inserts and deletes, because you can just count the deletion cost when you do the corresponding insert.
It does not work the other way around. Since you can have more inserts than deletes, there might not be enough deletes to pay the cost of each insert.
Upvotes: 1
Reputation: 373442
When assigning amortized costs to operations on a data structure, you need to ensure that, for any sequence of operations performed, that the sum of the amortized costs is always at least as big as the sum of the actual costs of those operations.
So let's take Option 1, which assigns an amortized cost of O(1) to insertions and an amortized cost of O(log n) to deletions. The question we have to ask is the following: is it true that for any sequence of operations on an empty binary heap, the real cost of those operations is upper-bounded by the amortized cost of those operations? And in this case, the answer is no. Imagine that you do a sequence purely of n insertions into the heap. The actual cost of performing these operations can be Θ(n log n) if each element has to bubble all the way up to the top of the heap. However, the amortized cost of those operations, with this accounting scheme, would be O(n), since we did n operations and pretended that each one cost O(1) time. Therefore, this amortized accounting scheme doesn't work, since it will let us underestimate the work that we're doing.
On the other hand, let's look at Option 2, where we assign O(log n) as our amortized insertion cost and O(1) as our amortized remove cost. Now, can we find a sequence of n operations where the real cost of those operations exceeds the amortized costs? In this case, the answer is no. Here's one way to see this. We've set the amortized cost of an insertion to be O(log n), which matches its real cost, and so the only way that we could end up underestimating the total is with our amortized cost of a deletion (O(1)), which is lower than the true cost of a deletion. However, that's not a problem here. In order for us to be able to do a delete operation, we have to have previously inserted the element that we're deleting. The combined real cost of the insertion and the deletion is O(log n) + O(log n) = O(log n), and the combined amortized cost of the insertion and the deletion is O(log n) + O(1) = O(log n). So in that sense, pretending that deletions are faster doesn't change our overall cost.
A nice intuitive way to see why the second approach works but the first one doesn't is to think about what amortized analysis is all about. The intuition behind amortization is to charge earlier operations a bit more so that future operations appear to take less time. In the case of the second accounting scheme, that's exactly what we're doing: we're shifting the cost of the deletion of an element from the binary heap back onto the cost of inserting that element into the heap in the first place. In that way, since we're only shifting work backwards, the sum of the amortized costs can't be lower than the sum of the real costs. On the other hand, in the first case, we're shifting work forward in time by making deletions pay for insertions. But that's a problem, because if we do a bunch of insertions and then never do the corresponding deletions we'll have shifted the work to operations that don't exist.
Upvotes: 6