Reputation: 898
I am trying to write a lexer, when I try to copy isdigit buffer value in an array of char, I get this core dumped error although I have done the same thing with identifier without getting error.
#include<fstream>
#include<iostream>
#include<cctype>
#include <cstring>
#include<typeinfo>
using namespace std;
int isKeyword(char buffer[]){
char keywords[22][10] = {"break","case","char","const","continue","default", "switch",
"do","double","else","float","for","if","int","long","return","short",
"sizeof","struct","void","while","main"};
int i, flag = 0;
for(i = 0; i < 22; ++i){
if(strcmp(keywords[i], buffer) == 0)
{
flag = 1;
break;
}
}
return flag;
}
int isSymbol_Punct(char word)
{
int flag = 0;
char symbols_punct[] = {'<','>','!','+','-','*','/','%','=',';','(',')','{', '}','.'};
for(int x= 0; x< 15; ++x)
{
if(word==symbols_punct[x])
{
flag = 1;
break;
}
}
return flag;
}
int main()
{
char buffer[15],buffer1[15];
char identifier[30][10];
char number[30][10];
memset(&identifier[0], '\0', sizeof(identifier));
memset(&number[0], '\0', sizeof(number));
char word;
ifstream fin("program.txt");
if(!fin.is_open())
{
cout<<"Error while opening the file"<<endl;
}
int i,k,j,l=0;
while (!fin.eof())
{
word = fin.get();
if(isSymbol_Punct(word)==1)
{
cout<<"<"<<word<<", Symbol/Punctuation>"<<endl;
}
if(isalpha(word))
{
buffer[j++] = word;
// cout<<"buffer: "<<buffer<<endl;
}
else if((word == ' ' || word == '\n' || isSymbol_Punct(word)==1) && (j != 0))
{
buffer[j] = '\0';
j = 0;
if(isKeyword(buffer) == 1)
cout<<"<"<<buffer<<", keyword>"<<endl;
else
{
cout<<"<"<<buffer<<", identifier>"<<endl;
strcpy(identifier[i],buffer);
i++;
}
}
else if(isdigit(word))
{
buffer1[l++] = word;
cout<<"buffer: "<<buffer1<<endl;
}
else if((word == ' ' || word == '\n' || isSymbol_Punct(word)==1) && (l != 0))
{
buffer1[l] = '\0';
l = 0;
cout<<"<"<<buffer1<<", number>"<<endl;
// cout << "Type is: "<<typeid(buffer1).name() << endl;
strcpy(number[k],buffer1);
k++;
}
}
cout<<"Identifier Table"<<endl;
int z=0;
while(strcmp(identifier[z],"\0")!=0)
{
cout <<z<<"\t\t"<< identifier[z]<<endl;
z++;
}
// cout<<"Number Table"<<endl;
// int y=0;
// while(strcmp(number[y],"\0")!=0)
// {
// cout <<y<<"\t\t"<< number[y]<<endl;
// y++;
// }
}
I am getting this error when I copy buffer1 in number[k] using strcpy. I do not understand why it is not being copied. When i printed the type of buffer1 to see if strcpy is not generating error, I got A_15, I searched for it, but did not find any relevant information.
Upvotes: 0
Views: 1017
Reputation: 340
The reason is here (line 56):
int i,k,j,l=0;
You might think that this initializes i
, j
, k
, and l
to 0
, but in fact it only initializes l
to 0
. i
, j
, and k
are declared here, but not initialized to anything. As a result, they contain random garbage, so if you use them as array indices you are likely to end up overshooting the bounds of the array in question.
At that point, anything could happen—in other words, this is undefined behavior. One likely outcome, which is probably happening to you, is that your program tries to access memory that hasn't been assigned to it by the operating system, at which point it crashes (a segmentation fault).
To give a concrete demonstration of what I mean, consider the following program:
#include <iostream>
void print_var(std::string name, int v)
{
std::cout << name << ": " << v << "\n";
}
int main(void)
{
int i, j, k, l = 0;
print_var("i", i);
print_var("j", j);
print_var("k", k);
print_var("l", l);
return 0;
}
When I ran this, I got the following:
i: 32765
j: -113535829
k: 21934
l: 0
As you can see, i
, j
, and k
all came out such that using them as indices into any of the arrays you declared would exceed their bounds. Unless you are very lucky, this will happen to you, too.
You can fix this by initializing each variable separately:
int i = 0;
int j = 0;
int k = 0;
int l = 0;
Initializing each on its own line makes the initializations easier to see, helping to prevent mistakes.
A few side notes:
-Wall -Wextra
to your compiler or the like—check its documentation for the specifics).int
, they are signed integers, which means they can hold negative values (as j
did in my demonstration). If you try to index into an array using a negative index, you will end up dereferencing a pointer to a location "behind" the start of the array in memory, so you will be in trouble even with an index of -1
(remember that a C-style array is basically just a pointer to the start of the array). Also, int
probably has only 32 bits in your environment, so if you're writing 64-bit code then it's possible to define arrays too large for an int
to fully cover, even if you were to index into the array from the middle. For these sorts of reasons, it's generally a good idea to type raw array indices as std::size_t, which is always capable of representing the size of the largest possible array in your target environment, and also is unsigned.Upvotes: 1
Reputation: 1190
Some general hints that might help you to avoid your cause of crash totally by design:
Upvotes: 0