Reputation: 34086
This is an extension to my previous question
:
Below df
:
In [225]: df = pd.DataFrame({'A': ['a'] * 12,
...: 'B': ['b'] * 12,
...: 'C': ['C1', 'C1', 'C2','C1', 'C3', 'C3', 'C2', 'C3', 'C3', 'C2', 'C2', 'C1'],
...: 'D': ['D1', 'D2', 'D1', 'D3', 'D3', 'D2', 'D4', 'all', 'D1', '0:1:all', 'D3', 'x:all:1'],
...: 'E': [{'value': '4', 'percentage': None}, {'value': 5, 'percentage': None}, {'value': 12, 'percentage': None}, {'value': 9, 'percentage': None}, {'value': '12', 'percentage': None}, {'value': 'N/A', 'percentage': None}, {}, {'val
...: ue': 24, 'percentage': None}, {'value': 12, 'percentage': None}, {'value': 33, 'percentage': None}, {'value': 11, 'percentage': None}, {'value': '9', 'percentage': None}]})
...:
Pivot
of above df:
In [227]: x = df.pivot(['B', 'C', 'D'], 'A', ['E'])
In [228]: x
Out[228]:
E
A a
B C D
b C1 D1 {'value': '4', 'percentage': None}
D2 {'value': 5, 'percentage': None}
D3 {'value': 9, 'percentage': None}
x:all:1 {'value': '9', 'percentage': None}
C2 0:1:all {'value': 33, 'percentage': None}
D1 {'value': 12, 'percentage': None}
D3 {'value': 11, 'percentage': None}
D4 {}
C3 D1 {'value': 12, 'percentage': None}
D2 {'value': 'N/A', 'percentage': None}
D3 {'value': '12', 'percentage': None}
all {'value': 24, 'percentage': None}
I want to sort the innermost column which is D for each group of outer columns B and C based on the multi-level column with index (E, a) in asc/desc order based on value key from dict.
But, for every group there would be a row with the total value of all other rows. The row with total is identified by the value which has all
in substring. I always need to keep that row at the last irrespective of sorting order(asc or desc).
Expected output in case of asc:
Out[228]:
E
A a
B C D
b C1 D1 {'value': '4', 'percentage': None}
D2 {'value': 5, 'percentage': None}
D3 {'value': 9, 'percentage': None}
x:all:1 {'value': '9', 'percentage': None}
C2 D3 {'value': 11, 'percentage': None}
D1 {'value': 12, 'percentage': None}
D4 {}
0:1:all {'value': 33, 'percentage': None}
C3 D1 {'value': 12, 'percentage': None}
D3 {'value': '12', 'percentage': None}
D2 {'value': 'N/A', 'percentage': None}
all {'value': 24, 'percentage': None}
Expected output in case of desc:
Out[228]:
E
A a
B C D
b C1 D3 {'value': 9, 'percentage': None}
D2 {'value': 5, 'percentage': None}
D1 {'value': '4', 'percentage': None}
x:all:1 {'value': '9', 'percentage': None}
C2 D1 {'value': 12, 'percentage': None}
D3 {'value': 11, 'percentage': None}
D4 {}
0:1:all {'value': 33, 'percentage': None}
C3 D1 {'value': 12, 'percentage': None}
D3 {'value': '12', 'percentage': None}
D2 {'value': 'N/A', 'percentage': None}
all {'value': 24, 'percentage': None}
Upvotes: 2
Views: 38
Reputation: 863226
Use Index.get_level_values
with str.contains
for test all
:
lvls = list(x.index.names[:-1])
print (lvls)
['B', 'C']
x[('tmp', 'tmp')] = pd.to_numeric(x[('E','a')].str.get('value'), errors='coerce')
x[('max','tmp')] = x.index.get_level_values(-1).str.contains('all')
x1 = x.sort_values(lvls + [('max','tmp'), ('tmp','tmp')])
print (x1)
E tmp max
A a tmp tmp
B C D
b C1 D1 {'value': '4', 'percentage': None} 4.0 False
D2 {'value': 5, 'percentage': None} 5.0 False
D3 {'value': 9, 'percentage': None} 9.0 False
x:all:1 {'value': '9', 'percentage': None} 9.0 True
C2 D3 {'value': 11, 'percentage': None} 11.0 False
D1 {'value': 12, 'percentage': None} 12.0 False
D4 {} NaN False
0:1:all {'value': 33, 'percentage': None} 33.0 True
C3 D1 {'value': 12, 'percentage': None} 12.0 False
D3 {'value': '12', 'percentage': None} 12.0 False
D2 {'value': 'N/A', 'percentage': None} NaN False
all {'value': 24, 'percentage': None} 24.0 True
And:
x2 = x.sort_values(lvls + [('max','tmp'), ('tmp','tmp')],
ascending=[True] * len(lvls) + [True, False])
print (x2)
E tmp max
A a tmp tmp
B C D
b C1 D3 {'value': 9, 'percentage': None} 9.0 False
D2 {'value': 5, 'percentage': None} 5.0 False
D1 {'value': '4', 'percentage': None} 4.0 False
x:all:1 {'value': '9', 'percentage': None} 9.0 True
C2 D1 {'value': 12, 'percentage': None} 12.0 False
D3 {'value': 11, 'percentage': None} 11.0 False
D4 {} NaN False
0:1:all {'value': 33, 'percentage': None} 33.0 True
C3 D1 {'value': 12, 'percentage': None} 12.0 False
D3 {'value': '12', 'percentage': None} 12.0 False
D2 {'value': 'N/A', 'percentage': None} NaN False
all {'value': 24, 'percentage': None} 24.0 True
Last remove helper columns:
x1 = x1.drop([('max','tmp'), ('tmp','tmp')], axis=1)
x2 = x2.drop([('max','tmp'), ('tmp','tmp')], axis=1)
Upvotes: 2