Reputation: 62
Given: two dataframes below
df1:
| Company | Package | Badge Number | Work Date |
|----------|---------|--------------|------------|
| Compnay1 | X | 1 | 2020-01-01 |
| Company2 | X | 2 | 2020-01-01 |
df2:
| Company | Package | Badge Number | Work Date |
|----------|---------|--------------|------------|
| Compnay1 | X | 1 | 2020-01-01 |
| Compnay1 | Y | 1 | 2020-01-01 |
| Company2 | X | 1 | 2020-01-01 |
| Company2 | Y | 1 | 2020-01-01 |
| Company2 | X | 2 | 2020-01-01 |
What's needed: I need to write python code which will be similar to this SQL statement.
SELECT *
FROM df1
INNER JOIN df2
ON df1.[Badge Number] = df2.[Badge Number]
AND df1.[Work Date] = df2.[Work Date]
AND (df1.[Company] != df2.[Company] OR df1.[Package] != df2.[Package])
result:
| df1.Company | df1.Package | df1.Badge Number | df1.Work Date | df2.Company | df2.Package | df2.Badge Number | df2.Work Date |
|-------------|-------------|------------------|---------------|-------------|-------------|------------------|---------------|
| Compnay1 | X | 1 | 2020-01-01 | Compnay1 | Y | 1 | 2020-01-01 |
| Compnay1 | X | 1 | 2020-01-01 | Company2 | X | 1 | 2020-01-01 |
| Compnay1 | X | 1 | 2020-01-01 | Company2 | Y | 1 | 2020-01-01 |
Can this be done purely in pandas without needed to write SQL queries in the python code?
Upvotes: 1
Views: 469
Reputation: 863291
One idea is use DataFrame.merge
:
df = df1.merge(df2, on=['Badge Number','Work Date'])
Ane then filter:
df [(df['Company_x'] != df['Company_y']) | (df['Package_x'] != df['Package_y'])]
Upvotes: 2