Reputation: 113
I have defined a custom loss function for my model.
def get_loss(y_hat, y):
loss = tf.keras.losses.BinaryCrossentropy(y_hat,y) # cross entropy (but no logits)
y_hat = tf.math.sigmoid(y_hat)
tp = tf.math.reduce_sum(tf.multiply(y_hat, y),[1,2])
fn = tf.math.reduce_sum((y - tf.multiply(y_hat, y)),[1,2])
fp = tf.math.reduce_sum((y_hat -tf.multiply(y_hat,y)),[1,2])
loss = loss - ((2 * tp) / tf.math.reduce_sum((2 * tp + fp + fn + 1e-10))) # fscore
return loss
When fitting my model to my training data I get following error:
TypeError: Expected float32, got <tensorflow.python.keras.losses.BinaryCrossentropy object at 0x7feca46d0d30> of type 'BinaryCrossentropy' instead.
How can I fix this? I already tried to use:
loss=tf.int32(tf.keras.losses.BinaryCrossentropy(y_hat,y)
but this spits out another error and seems to not be the solution I need
Upvotes: 0
Views: 270
Reputation: 36724
You need to call the instantiated object, rather than passing the input as arguments. As such:
loss = tf.keras.losses.BinaryCrossentropy()(y_hat,y)
Notice the extra set of parentheses. Or, do it like this:
loss = tf.keras.losses.binary_crossentropy(y_hat, y)
Upvotes: 3