Reputation: 991
all, i am trying to create from scratch (without use of sklearn libs) to create 5 samples (len of df / 5) such that each one has the same proportion of target variable (1's) as the original dataset. e.g. original has 5% cancer patients i would like each of my 5 samples to also have 5% target variable. unsure how to do this,
df_list=[]
n= round(len(df)/5)
for m in range(1,6):
m = m*n
print(df[:m])
df_list.append(df[:m])
this creates each chunk i would like but how can i now do it such that the target variable is of same % as original?
Upvotes: 1
Views: 807
Reputation: 176
Solution:
import numpy as np
import math
def stratify(data, target='y', n=10):
array = data.values
y = data[target].values
unique, counts = np.unique(data[target].values, return_counts=True)
new_counts = counts * (n/sum(counts))
new_counts = fit_new_counts_to_n(new_counts, n)
selected_count = np.zeros(len(unique))
selected_row_indices = []
for i in range(array.shape[0]):
if sum(selected_count) == sum(new_counts):
break
cr_target_value = y[i]
cr_target_index = np.where(unique==cr_target_value)[0][0]
if selected_count[cr_target_index] < new_counts[cr_target_index]:
selected_row_indices.append(i)
selected_count[cr_target_index] += 1
row_indices_mask = np.array([x in selected_row_indices for x in np.arange(array.shape[0])])
return pd.DataFrame(array[row_indices_mask], columns=data.columns)
Utility class:
def fit_new_counts_to_n(new_counts, n):
decimals = [math.modf(x)[0] for x in new_counts]
integers = [int(math.modf(x)[1]) for x in new_counts]
arg_max = np.array(map(np.argmax, decimals))
sorting_indices = np.argsort(decimals)[::-1][:n]
for i in sorting_indices:
if sum(integers) < n:
integers[i] += 1
else:
break
return integers
Example Usage:
data = [[ 3, 0],
[ 54, 3],
[ 3, 1],
[ 64, 1],
[ 65, 0],
[ 34, 1],
[ 45, 2],
[534, 2],
[ 57, 1],
[ 64, 3],
[ 5, 1],
[ 45, 1],
[546, 1],
[ 4, 2],
[ 53, 3],
[345, 2],
[456, 2],
[435, 3],
[545, 1],
[ 45, 3]]
data = pd.DataFrame(data, columns=['X1', 'y'])
stratified_data = stratify(data, target='y', n=10)
Result:
[[ 3, 0],
[ 54, 3],
[ 3, 1],
[ 64, 1],
[ 34, 1],
[ 45, 2],
[534, 2],
[ 57, 1],
[ 64, 3],
[ 53, 3]]
Upvotes: 1