Reputation: 225
I have a dataframe like the following that I want to convert to ISO-8601:
| production_date | expiration_date |
--------------------------------------------------------------
|["20/05/1996","01/01/2018"] | ["15/01/1997","27/03/2019"] |
| .... .... |
--------------------------------------------------------------
I want:
| good_prod_date | good_exp_date |
-------------------------------------------------------------
|[1996-05-20,2018-01-01] | [1997-01-01,2019-03-27] |
| .... .... |
-------------------------------------------------------------
However, there are over 20 columns and millions of rows. Im trying to avoid using UDFs since they are inefficient and, most of the time, a poor approach. Im also avoiding exploding each column because that is:
So far I have the following:
def explodeCols(df):
return (df
.withColumn("production_date", sf.explode("production_date"))
.withColumn("expiration_date", sf.explode("expiration_date")))
def fixTypes(df):
return (df
.withColumn("production_date", sf.to_date("production_date", "dd/MM/yyyy"))
.withColumn("expiration_date", sf.to_date("expiration_date", "dd/MM/yyyy")))
def consolidate(df):
cols = ["production_date", "expiration_date"]
return df.groupBy("id").agg(*[sf.collect_list(c) for c in cols])
historyDF = (df
.transform(explodeCols)
.transform(fixTypes)
.transform(consolidate))
However when I run this code on DataBricks, the jobs never execute, in fact, it results in failed/dead executors (which isn't good).
Another solution I tried is the following:
df.withColumn("good_prod_date", col("production_date").cast(ArrayType(DateType())))
But the result I get is an array of nulls:
| production_date | good_prod_date |
-------------------------------------------------------------
|["20/05/1996","01/01/2018"] | [null,null] |
| .... .... |
-------------------------------------------------------------
Upvotes: 1
Views: 1944
Reputation: 10382
Use pyspark.sql.function.transform
higher order function instead of explode
function, to transform each value in array.
df
.withColumn("production_date",F.expr("transform(production_date,v -> to_date(v,'dd/MM/yyyy'))"))
.withColumn("expiration_date",F.expr("transform(expiration_date,v -> to_date(v,'dd/MM/yyyy'))"))
.show()
df.withColumn("good_prod_date", col("production_date").cast(ArrayType(DateType())))
This will not work because production_date
has different date format, if this column has date format like yyyy-MM-dd
casting will work.
df.select("actual_date").printSchema()
root
|-- actual_date: array (nullable = true)
| |-- element: string (containsNull = true)
df.select("actual_date").show(false)
+------------------------+
|actual_date |
+------------------------+
|[1997-01-15, 2019-03-27]|
+------------------------+
df.select("actual_date").withColumn("actual_date", F.col("actual_date").cast("array<date>")).printSchema()
root
|-- actual_date: array (nullable = true)
| |-- element: date (containsNull = true)
df.select("actual_date").withColumn("actual_date", F.col("actual_date").cast("array<date>")).show()
+------------------------+
|actual_date |
+------------------------+
|[1997-01-15, 2019-03-27]|
+------------------------+
Upvotes: 1