Reputation: 1461
I need to convert a diagonal Dataframe to 1 row Dataframe. Input:
df = pd.DataFrame([[7, 0, 0, 0],
[0, 2, 0, 0],
[0, 0, 3, 0],
[0, 0, 0, 8],],
columns=list('ABCD'))
A B C D
0 7 0 0 0
1 0 2 0 0
2 0 0 3 0
3 0 0 0 8
Expected output:
A B C D
0 7 2 3 8
what i tried so far to do this:
df1 = df.sum().to_frame().transpose()
df1
A B C D
0 7 2 3 8
It does the job. But is there any elegant way to do this by groupby
or some other pandas
builtin?
Upvotes: 0
Views: 383
Reputation: 16683
You can use: np.diagonal(df)
:
pd.DataFrame(np.diagonal(df), df.columns).T
A B C D
0 7 2 3 8
Upvotes: 1
Reputation: 28644
Not sure if there is any other 'elegant' way, I can only propose alternatives:
Use numpy.diagonal
pd.DataFrame([df.to_numpy().diagonal()], columns=df.columns)
A B C D
0 7 2 3 8
Use groupby with boolean (not sure if this is better than your solution):
df.groupby([True] * len(df), as_index=False).sum()
A B C D
0 7 2 3 8
Upvotes: 1