Reputation: 2213
I have the following code. I set the random state already. Everytime I do cross validation, it gives me a new set of optimal parameters. This just doesn't make sense to me. Why is this happening ?
rs = 5
param_range = np.arange(1,150,10,dtype=int)
param_range2 = np.arange(5,20,5,dtype=int)
pipe_steps = [('rfc',RandomForestClassifier())]
check_params = {
'rfc__n_estimators':param_range,
'rfc__max_depth':param_range2
}
pipeline = Pipeline(pipe_steps)
print('-------------------------- CV Start - Fitting training data --------------------------')
for K in [5,8,10]:
create_grid = GridSearchCV(pipeline,param_grid=check_params,cv=KFold(n_splits=K, random_state=rs, shuffle=True))
create_grid.fit(X_train,y_train)
print('********************* Pipeline %d fold CV *********************' % (K))
print(create_grid.best_params_)
print("test score:= %3.2f" % (create_grid.score(X_test,y_test)))
print("CV End")
First time, I ran the code , it would give me below
-------------------------- CV Start - Fitting training data --------------------------
********************* Pipeline 5 fold CV *********************
{'rfc__max_depth': 10, 'rfc__n_estimators': 21}
test score:= 0.53
********************* Pipeline 8 fold CV *********************
{'rfc__max_depth': 10, 'rfc__n_estimators': 101}
test score:= 0.61
********************* Pipeline 10 fold CV *********************
{'rfc__max_depth': 5, 'rfc__n_estimators': 81}
test score:= 0.68
CV End
Second time, I ran the code, the optimal parameters change.
-------------------------- CV Start - Fitting training data --------------------------
********************* Pipeline 5 fold CV *********************
{'rfc__max_depth': 10, 'rfc__n_estimators': 81}
test score:= 0.55
********************* Pipeline 8 fold CV *********************
{'rfc__max_depth': 15, 'rfc__n_estimators': 71}
test score:= 0.53
********************* Pipeline 10 fold CV *********************
{'rfc__max_depth': 15, 'rfc__n_estimators': 81}
test score:= 0.63
CV End
Upvotes: 0
Views: 807
Reputation: 60321
In order to get reproducible results, you have to set the seed for every action in the code that involves randomness. Here you do it for GridSearchCV
and KFold
, but not for your RandomForestClassifier
; you should initialize it as
pipe_steps = [('rfc',RandomForestClassifier(random_state=rs))]
Upvotes: 1