fdc
fdc

Reputation: 3

Cuda GPUassert: an illegal memory access was encountered

I was trying to make a game program using __device __ variables instead of declaring it dynamically using cudaMalloc, but it keeps telling me that GPUassert: illegal memory access was encountered at the third last line where the cudaDeviceSynchronization() is called. I have tried the version using cudaMalloc and it worked out fine.

#include "cuda_runtime.h"
#include "device_launch_parameters.h"

#include <iostream>
#include <cmath>
#include <stdio.h>
#include <stdlib.h>
#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, const char* file, int line, bool abort = true)
{
    if (code != cudaSuccess)
    {
        fprintf(stderr, "GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
        if (abort) exit(code);
    }
}

#define M 3
#define N 3
#define K 3

using namespace std;

__device__ double A_dev[M * K];
__device__ double B_dev[K * N];
__device__ double C_dev[M * N];

__global__ void gemm(double* A, double* B, double* C, int m, int n, int k)
{
    int x = blockDim.x * blockIdx.x + threadIdx.x;
    int y = blockDim.y * blockIdx.y + threadIdx.y;

    int i = x * n + y;
    
    double sum = 0.0;
    for (int j = 0; j < k; j++)
    {
        sum += A[x * k + j] * B[n * j + y];
    }
    C[i] = sum;
    printf("The value is %f", C[i]);

}

int main(void)
{
    double A_h[M * K];
    double B_h[K * N];
    double C_h[M * N];
    
    for (int i = 0; i < M*K; i++)
    {
        A_h[i] = (double)i;
        B_h[i] = (double)i;
        C_h[i] = 0.0;
    }

    gpuErrchk(cudaMemcpyToSymbol(A_dev, A_h, M * K * sizeof(double), 0, cudaMemcpyHostToDevice));
    gpuErrchk(cudaMemcpyToSymbol(B_dev, B_h, K * N * sizeof(double), 0, cudaMemcpyHostToDevice));
    gpuErrchk(cudaMemcpyToSymbol(C_dev, C_h, M * N * sizeof(double), 0, cudaMemcpyHostToDevice));

    gpuErrchk(cudaPeekAtLastError());
    gpuErrchk(cudaDeviceSynchronize());

    dim3 dimGrid(1, 1, 1);
    dim3 dimBlock(3, 3, 1);
    gemm <<<dimGrid, dimBlock >>> (A_dev, B_dev, C_dev, 3, 3, 3);
    gpuErrchk(cudaPeekAtLastError());
    gpuErrchk(cudaDeviceSynchronize());

    gpuErrchk(cudaMemcpyFromSymbol(C_h, C_dev, M * N * sizeof(double), 0, cudaMemcpyDeviceToHost));

    return 0;
}

Upvotes: 0

Views: 1662

Answers (1)

Robert Crovella
Robert Crovella

Reputation: 151849

When using __device__ variables, they are inherently at global scope, and we do not pass those as kernel arguments. You use those variables directly in kernel code without having to have a kernel argument for them.

If you make the following changes to your code, it will run without error:

#include <iostream>
#include <cmath>
#include <stdio.h>
#include <stdlib.h>
#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, const char* file, int line, bool abort = true)
{
    if (code != cudaSuccess)
    {
        fprintf(stderr, "GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
        if (abort) exit(code);
    }
}

#define M 3
#define N 3
#define K 3

using namespace std;

__device__ double A_dev[M * K];
__device__ double B_dev[K * N];
__device__ double C_dev[M * N];

__global__ void gemm(int m, int n, int k)
{
    int x = blockDim.x * blockIdx.x + threadIdx.x;
    int y = blockDim.y * blockIdx.y + threadIdx.y;

    int i = x * n + y;
    
    double sum = 0.0;
    for (int j = 0; j < k; j++)
    {
        sum += A_dev[x * k + j] * B_dev[n * j + y];
    }
    C_dev[i] = sum;
    printf("The value is %f", C_dev[i]);

}

int main(void)
{
    double A_h[M * K];
    double B_h[K * N];
    double C_h[M * N];
    
    for (int i = 0; i < M*K; i++)
    {
        A_h[i] = (double)i;
        B_h[i] = (double)i;
        C_h[i] = 0.0;
    }

    gpuErrchk(cudaMemcpyToSymbol(A_dev, A_h, M * K * sizeof(double), 0, cudaMemcpyHostToDevice));
    gpuErrchk(cudaMemcpyToSymbol(B_dev, B_h, K * N * sizeof(double), 0, cudaMemcpyHostToDevice));
    gpuErrchk(cudaMemcpyToSymbol(C_dev, C_h, M * N * sizeof(double), 0, cudaMemcpyHostToDevice));

    gpuErrchk(cudaPeekAtLastError());
    gpuErrchk(cudaDeviceSynchronize());

    dim3 dimGrid(1, 1, 1);
    dim3 dimBlock(3, 3, 1);
    gemm <<<dimGrid, dimBlock >>> (3, 3, 3);
    gpuErrchk(cudaPeekAtLastError());
    gpuErrchk(cudaDeviceSynchronize());

    gpuErrchk(cudaMemcpyFromSymbol(C_h, C_dev, M * N * sizeof(double), 0, cudaMemcpyDeviceToHost));

    return 0;
}

Upvotes: 2

Related Questions