Reputation: 1822
I have spark data frame that looks like:
+------------+---------+---------------------------------------------------------------------------------------------------------+
|parent_key |id |value |raw_is_active |updated_at |
+------------+---------+------------------------------------------------------------+------------------------+-------------------+
|1 |2 |[, 0, USER, 2020-12-11 04:50:40, 2020-12-11 04:50:40,] |[2020-12-11 04:50:40, 0]|2020-12-11 04:50:40|
|1 |2 |[testA, 0, USER, 2020-12-11 04:50:40, 2020-12-11 17:18:00,] |null |2020-12-11 17:18:00|
|1 |2 |[testA, 0, USER, 2020-12-11 04:50:40, 2020-12-11 17:19:56,] |null |2020-12-11 17:19:56|
|1 |2 |[testA, 1, USER, 2020-12-11 04:50:40, 2020-12-11 17:20:24,] |[2020-12-11 17:20:24, 1]|2020-12-11 17:20:24|
|2 |3 |[testB, 0, USER, 2020-12-11 17:24:03, 2020-12-11 17:24:03,] |[2020-12-11 17:24:03, 0]|2020-12-11 17:24:03|
|3 |4 |[testC, 0, USER, 2020-12-11 17:27:36, 2020-12-11 17:27:36,] |[2020-12-11 17:27:36, 0]|2020-12-11 17:27:36|
+------------+---------+------------------------------------------------------------+------------------------+-------------------+
Schema is:
root
|-- parent_key: long (nullable = true)
|-- id: string (nullable = true)
|-- value: struct (nullable = true)
| |-- first_name: string (nullable = true)
| |-- is_active: integer (nullable = true)
| |-- source: string (nullable = true)
| |-- created_at: timestamp (nullable = true)
| |-- updated_at: timestamp (nullable = true)
|-- raw_is_active: struct (nullable = true)
| |-- updated_at: timestamp (nullable = true)
| |-- value: integer (nullable = true)
|-- updated_at: timestamp (nullable = true)
I am looking for an output:
+------------+---------+------------------------------------------------------------+---------------------------------------------------+-------------------+
|parent_key |id |value |raw_is_active |updated_at |
+------------+---------+---------------------------------------------------------------------------------------------------------+--------------------------+
|1 |2 |[testA, 1, USER, 2020-12-11 04:50:40, 2020-12-11 17:20:24] |[[2020-12-11 04:50:40, 0],[2020-12-11 17:20:24, 1]]|2020-12-11 04:50:40|
|2 |3 |[testB, 0, USER, 2020-12-11 17:24:03, 2020-12-11 17:24:03] |[2020-12-11 17:24:03, 0] |2020-12-11 17:24:03|
|3 |4 |[testC, 0, USER, 2020-12-11 17:27:36, 2020-12-11 17:27:36] |[2020-12-11 17:27:36, 0] |2020-12-11 17:27:36|
+------------+---------+---------------------------------------------------------------------------------------------------------+--------------------------+
So on the basis of the updated_at
column I want to keep the latest row and also wants to create an array for raw_is_active
for all the rows for a given id
.
I know I can pick the latest value
using code:
val windowSpec = Window.partitionBy("id").orderBy(col("updated_at").desc)
dataFrame
.withColumn("maxTS", first("updated_at").over(windowSpec))
.select("*").where(col("maxTS") === col("updated_at"))
.drop("maxTS")
But not sure how I can also create a set for raw_is_active
column.
Or I can completely use group by function like:
dataFrame
.groupBy("parent_key", "id")
.agg(collect_list("value") as "value_list", collect_set("raw_is_active") as "active_list")
.withColumn("value", col("value_list")(size(col("value_list")).minus(1)))
.drop("value_list")
For the above I am not sure
.withColumn("value", col("value_list")(size(col("value_list")).minus(1)))
will always give me the latest valuecollect_list
and collect_set
, is this code efficient?UPDATE Thanks to @mck, I was able to get it working with code:
val windowSpec = Window.partitionBy("id").orderBy(col("updated_at").desc)
val windowSpecSet = Window.partitionBy("id").orderBy(col("updated_at"))
val df2 = dataFrame.withColumn(
"rn",
row_number().over(windowSpec)
).withColumn(
"active_list",
collect_set("raw_is_active").over(windowSpecSet)
).drop("raw_is_active").filter("rn = 1")
However the code is taking more time than my existing code:
dataFrame
.groupBy("parent_key", "id")
.agg(collect_list("value") as "value_list", collect_set("raw_is_active") as "active_list")
.withColumn("value", col("value_list")(size(col("value_list")).minus(1)))
.drop("value_list")
I was under impression that window function would perform better than groupBy
and agg
.
Upvotes: 1
Views: 1927
Reputation: 42352
Assign a row_number
for each row in each id partition and filter the rows with row_number = 1
:
val windowSpec = Window.partitionBy("id").orderBy(col("updated_at").desc)
val df2 = dataFrame.withColumn(
"rn",
row_number().over(windowSpec)
).withColumn(
"active_list",
array_sort(collect_set("raw_is_active").over(windowSpec))
).drop("raw_is_active").filter("rn = 1")
Upvotes: 1