Reputation: 127
working code
import pandas as pd
import seaborn as sns
import matplotlib as mpl
import numpy as np
from matplotlib import colors,cm
from matplotlib import pyplot as plt
filename = r'c:\Users\91956\Desktop\time_50.csv'
df = pd.read_csv(filename,index_col=0)
select_col = df.columns[1:]
cmap = mpl.colors.LinearSegmentedColormap.from_list("", ["red","white", "green"])
def background_gradient(s, cmap='PuBu', low=0, high=0):
s = pd.to_numeric(s, errors='coerce') #<-- here, string will become nan.
m = s.min() #<---------- here
M = s.max() #<-----------here
rng = M - m
norm = colors.TwoSlopeNorm(vmin=m - (rng * low), vcenter=0., vmax=M + (rng * high))
normed = norm(s.values)
c = [colors.rgb2hex(x) for x in plt.cm.get_cmap(cmap)(normed)]
return ['background-color: %s' % color for color in c]
S = df.style.apply( background_gradient,
cmap=cmap,
low=0.5,
high=0.5,
subset= pd.IndexSlice[:, select_col],
axis=1
)
html = S.render()
with open("output.html","w") as fp:
fp.write(html)
i was getting this error
File "c:\Users\91956\Desktop\asdf.py", line 29, in m=df.min().min(), File "C:\Users\91956\AppData\Local\Programs\Python\Python39\lib\site-packages\pandas\core\generic.py", line 11468, in stat_func return self._reduce( File "C:\Users\91956\AppData\Local\Programs\Python\Python39\lib\site-packages\pandas\core\series.py", line 4248, in _reduce return op(delegate, skipna=skipna, **kwds) File "C:\Users\91956\AppData\Local\Programs\Python\Python39\lib\site-packages\pandas\core\nanops.py", line 129, in f result = alt(values, axis=axis, skipna=skipna, **kwds) File "C:\Users\91956\AppData\Local\Programs\Python\Python39\lib\site-packages\pandas\core\nanops.py", line 873, in reduction result = getattr(values, meth)(axis) File "C:\Users\91956\AppData\Local\Programs\Python\Python39\lib\site-packages\numpy\core_methods.py", line 43, in _amin return umr_minimum(a, axis, None, out, keepdims, initial, where) TypeError: '>=' not supported between instances of 'numpy.ndarray' and 'str'
update 2 did necessary changes. was able to get required output.
Upvotes: 1
Views: 997
Reputation: 13349
This answer will help and also this answer.
To create sample df:
import pandas as pd
import numpy as np
np.random.seed(24)
df = pd.DataFrame({'A': np.linspace(1, 10, 10)})
df = pd.concat([df, pd.DataFrame(np.random.randn(10, 4), columns=list('BCDE'))],
axis=1)
df.iloc[3, 3] = np.nan
df.iloc[0, 2] = np.nan
from matplotlib import colors
cmap=LinearSegmentedColormap.from_list('rg',["r","w","g"], N=256)
def background_gradient(s, m, M, cmap='PuBu', low=0, high=0):
s = pd.to_numeric(s, errors='coerce') #<-- here, string will become nan.
print(s)
rng = M - m
norm = colors.DivergingNorm(vmin=m - (rng * low), vcenter=0., vmax=M + (rng * high))
normed = norm(s.values)
c = [colors.rgb2hex(x) for x in plt.cm.get_cmap(cmap)(normed)]
return ['background-color: %s' % color for color in c]
x = df.apply(pd.to_numeric, errors='coerce') #<--- here string will be converted to `NaN` so that I can find out the max and min value.
df.style.apply(background_gradient,
cmap=cmap,
m=x.min().min(),
M=x.max().max(),
low=0.5,
high=0.5, subset=pd.IndexSlice[:, ['B', 'C']]
)
Edit:
pass subset=pd.IndexSlice[:, ['B', 'C']]
to apply <-- I want to apply colour on B
and C
column.
df.style.apply(background_gradient,
cmap=cmap,
m=df.min().min(),
M=df.max().max(),
low=0.5,
high=0.5, subset=pd.IndexSlice[:, ['B', 'C']]
)
from matplotlib import colors
cmap=LinearSegmentedColormap.from_list('rg',["r","w","g"], N=256)
def background_gradient(s, cmap='PuBu', low=0, high=0):
s = pd.to_numeric(s, errors='coerce')
m = s.min() #<---------- here
M = s.max() #<-----------here
rng = M - m
norm = colors.DivergingNorm(vmin=m - (rng * low), vcenter=0., vmax=M + (rng * high))
normed = norm(s.values)
c = [colors.rgb2hex(x) for x in plt.cm.get_cmap(cmap)(normed)]
return ['background-color: %s' % color for color in c]
# x = df.apply(pd.to_numeric, errors='coerce')
df.style.apply(background_gradient,
cmap=cmap,
low=0.5,
high=0.5, subset=pd.IndexSlice[:, ['B', 'C', 'D']], axis=1
)
Use axis=1
in apply (along column wise comparison for each row)
Upvotes: 2