pars1221
pars1221

Reputation: 27

Pandas: Creating a pandas date-time series with different frequencies

I need to create a pandas column that has a date range from 2015-12-01 to 2016-12-01, but with different time frequencies:

The output for the first day should look like this, however the objective is to do it for all the date range:

1    2015-12-01 02:00:00
2    2015-12-01 03:00:00
3    2015-12-01 04:00:00
4    2015-12-01 05:00:00
5    2015-12-01 06:00:00
6    2015-12-01 07:00:00
7    2015-12-01 07:30:00
8    2015-12-01 08:00:00
9    2015-12-01 08:30:00
10   2015-12-01 09:00:00
11   2015-12-01 09:30:00
12   2015-12-01 10:00:00
13   2015-12-01 10:30:00
14   2015-12-01 11:00:00
15   2015-12-01 11:30:00
16   2015-12-01 12:00:00
17   2015-12-01 12:30:00
18   2015-12-01 13:00:00
19   2015-12-01 13:30:00
20   2015-12-01 14:00:00
21   2015-12-01 14:30:00
22   2015-12-01 15:00:00
23   2015-12-01 15:30:00
24   2015-12-01 16:00:00
25   2015-12-01 16:30:00
26   2015-12-01 17:00:00
27   2015-12-01 17:30:00
28   2015-12-01 18:00:00
29   2015-12-01 18:30:00
30   2015-12-01 19:00:00
31   2015-12-01 19:30:00
32   2015-12-01 20:00:00
33   2015-12-01 20:30:00
34   2015-12-01 21:00:00
35   2015-12-01 21:30:00
36   2015-12-01 22:00:00
37   2015-12-01 23:00:00
38   2015-12-02 00:00:00

For this I used:

datetime_series_1 = pd.Series(pd.date_range("2015-12-01 01:00:00", periods=7 , freq="h"))
datetime_series_2 = pd.Series(pd.date_range("2015-12-01 07:30:00", periods=29 , freq="30min"))
datetime_series_3 = pd.Series(pd.date_range("2015-12-01 22:00:00", periods=3 , freq="h"))
datetime_series = pd.concat([datetime_series_1, datetime_series_2, datetime_series_3])
datetime_series.reset_index(inplace=True, drop=True)

print(datetime_series)

However I don't know how to make a for loop that can reproduce this but over the date range from 2015-12-01 to 2016-12-01 I mentioned above. Basically I don't know how in the for loop I can indicate it to change the date in the string of the date_range method.

Any help would be greatly appreciated.

Thank you !

Upvotes: 1

Views: 1152

Answers (1)

noah
noah

Reputation: 2776

This should do the trick:

#Your code
datetime_series_1 = pd.Series(pd.date_range("2015-12-01 01:00:00", periods=7 , freq="h"))
datetime_series_2 = pd.Series(pd.date_range("2015-12-01 07:30:00", periods=29 , freq="30min"))
datetime_series_3 = pd.Series(pd.date_range("2015-12-01 22:00:00", periods=3 , freq="h"))
datetime_series = pd.concat([datetime_series_1, datetime_series_2, datetime_series_3])
datetime_series.reset_index(inplace=True, drop=True)

#loop through the number of days and use a day delta adding to list
list_dates = [datetime_series]*366 #2016 was leap year :)
for i in range(0,366):
    list_dates[i] = datetime_series + pd.Timedelta("{0} days".format(i))

#concat that list at the end
datetime_series = pd.concat(list_dates)
print(datetime_series)

Upvotes: 3

Related Questions