Reputation: 167
I have a pandas dataframe with 27 columns and ~45k rows that I need to insert into a SQL Server table.
I am currently using with the below code and it takes 90 mins to insert:
conn = pyodbc.connect('Driver={ODBC Driver 17 for SQL Server};\
Server=@servername;\
Database=dbtest;\
Trusted_Connection=yes;')
cursor = conn.cursor() #Create cursor
for index, row in t6.iterrows():
cursor.execute("insert into dbtest.dbo.test( col1, col2, col3, col4,col5,col6,col7,col8,col9,col10,col11,col12,col13,col14,,col27)\
values (?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?)",
row['col1'],row['col2'], row['col3'],,row['col27'])
I have also tried to load using executemany and that takes even longer to complete, at nearly 120mins.
I am really looking for a faster load time since I need to run this daily.
Upvotes: 0
Views: 4359
Reputation: 21
You can try to use the method 'multi' built in pandas to_sql.
df.to_sql('table_name', con=engine, if_exists='replace', index=False, method='multi')
The multi method allows you to 'Pass multiple values in a single INSERT clause.' per documentation. I found it to be pretty efficient.
Upvotes: 0
Reputation: 1511
You can set fast_executemany in pyodbc itself for versions>=4.0.19. It is off by default.
import pyodbc
server_name = 'localhost'
database_name = 'AdventureWorks2019'
table_name = 'MyTable'
driver = 'ODBC Driver 17 for SQL Server'
connection = pyodbc.connect(driver='{'+driver+'}', server=server_name, database=database_name, trusted_connection='yes')
cursor = connection.cursor()
cursor.fast_executemany = True # reduce number of calls to server on inserts
# form SQL statement
columns = ", ".join(df.columns)
values = '('+', '.join(['?']*len(df.columns))+')'
statement = "INSERT INTO "+table_name+" ("+columns+") VALUES "+values
# extract values from DataFrame into list of tuples
insert = [tuple(x) for x in df.values]
cursor.executemany(statement, insert)
Or if you prefer sqlalchemy and dataframes directly.
import sqlalchemy as db
engine = db.create_engine('mssql+pyodbc://@'+server_name+'/'+database_name+'?trusted_connection=yes&driver='+driver, fast_executemany=True)
df.to_sql(table_name, engine, if_exists='append', index=False)
See fast_executemany in this link.
https://github.com/mkleehammer/pyodbc/wiki/Features-beyond-the-DB-API
Upvotes: 2
Reputation: 16683
I have worked through this in the past, and this was the fastest that I could get it to work using sqlalchemy
.
import sqlalchemy as sa
engine = (sa.create_engine(f'mssql://@{server}/{database}
?trusted_connection=yes&driver={driver_name}', fast_executemany=True)) #windows authentication
df.to_sql('Daily_Report', con=engine, if_exists='append', index=False)
If the engine is not working for you, then you may have a different setup so please see: https://docs.sqlalchemy.org/en/13/core/engines.html
You should be able to create the variables needed above, but here is how I get the driver
:
driver_name = ''
driver_names = [x for x in pyodbc.drivers() if x.endswith(' for SQL Server')]
if driver_names:
driver_name = driver_names[-1] #You may need to change the [-1] if wrong driver to [-2] or a different option in the driver_names list.
if driver_name:
conn_str = f'''DRIVER={driver_name};SERVER='''
else:
print('(No suitable driver found. Cannot connect.)')
Upvotes: 1