Reputation: 23
I need to do a linear fit as follows:
Y=a*X+b
I need to find the values of a and b that fit the experimental data the first thing that occurred to me was to use the polyfit function, but the problem is that in my data, X is a vector with 3 entries,
this is my code:
p_0=np.array([10,10,10])
p_1=np.array([100,10,10])
p_2=np.array([10,100,10])
p_3=np.array([10,10,100])
# Experimental data:
x=np.array([p_0,p_1,p_2,p_3])
y=np.array([35,60,75,65])
a=np.polyfit(x, y,1)
print(a)
I was expecting a list of lists to print, with the matrix and matrix b ... but I got TypeError("expected 1D vector for x")
Is there any way to do this with numpy or some other library?
Upvotes: 2
Views: 300
Reputation: 11161
sklearn can be used for this:
import numpy as np
from sklearn.linear_model import LinearRegression
model = LinearRegression()
p_0=np.array([10,10,10])
p_1=np.array([100,10,10])
p_2=np.array([10,100,10])
p_3=np.array([10,10,100])
# Experimental data:
x=np.array([p_0,p_1,p_2,p_3])
y=np.array([35,60,75,65])
model.fit(X=x, y=y)
print("coeff: ", *model.coef_)
print("intercept: ", model.intercept_)
output:
coeff: 0.27777777777777785 0.44444444444444464 0.33333333333333337
intercept: 24.444444444444436
A few other nice features of the sklearn package:
model.fit(x,y) # 1.0
model.rank_ # 3
model.predict([[1,2,3]]) # array([26.61111111])
Upvotes: 3
Reputation: 3238
One way to go about this is using numpy.linalg.lstsq
:
# Experimental data:
x=np.array([p_0,p_1,p_2,p_3])
y=np.array([35,60,75,65])
A = np.column_stack([x, np.ones(len(x))])
coefs = np.linalg.lstsq(A, y)[0]
print (coefs)
# 0.27777778 0.44444444 0.33333333 24.44444444
Another option is to use LinearRegression
from sklearn
:
from sklearn.linear_model import LinearRegression
reg = LinearRegression().fit(x, y)
print (reg.coef_, reg.intercept_)
# array([0.27777778, 0.44444444, 0.33333333]), 24.444444444444443
Upvotes: 2