Reputation: 1546
I have line plots y vs x. y is sigmoid and varies from 0 to 1.
library(tidyverse)
# continuous variables
x <- seq(-5, 5, 0.1)
# compute y1
error_term <- runif(1, min = -2, max = 2)
y1 <- 1/(1 + exp(-x + error_term))
# compute y2
error_term <- runif(1, min = -2, max = 2)
y2 <- 1/(1 + exp(-x + error_term))
# merge y
y <- c(y1, y2)
x <- c(x, x)
# categorical variable
a <- c(rep(0, 101), rep(1, 101))
tbl <- tibble(x, a, y)
# TASK
# 1. determine values of x at which y = 0.5 for all categories and store them in variable x0
# 2. Use x0 to draw vertical lines in plots at x where y is 0.5
# ggplot
ggplot(data = tbl,
aes(x = x,
y = y)) +
geom_line() +
theme_bw() +
facet_grid(a ~ .)
Upvotes: 0
Views: 213
Reputation: 206242
This really isn't something built in to ggplot so you'll need to summarize the data yourself prior to plotting. You can write a helper function and then create the data you need for the lines
find_intersect <- function(x,y, target=0.5) {
optimize(function(z) (approxfun(x,y)(z)-target)^2, x)$minimum
}
line_data <- tbl %>%
group_by(a) %>%
summarize(xint=find_intersect(x,y))
Then plot with
ggplot(data = tbl,
aes(x = x,
y = y)) +
geom_line() +
theme_bw() +
geom_vline(aes(xintercept=xint), data=line_data) +
facet_grid(a ~ .)
Upvotes: 1