Reputation: 29
I have a dictionary in the below format
{'X_tr': {'school_state': col1 col2
0 0.009099 0.047694
1 0.004304 0.024660
2 0.003129 0.019796
3 0.002541 0.018430
4 0.009099 0.047694
... ... ...
73191 0.013457 0.055167
73192 0.001530 0.009481
73193 0.002869 0.015657
73194 0.002869 0.015657
73195 0.002118 0.013102
[73196 rows x 2 columns], 'clean_categories': col1 col2
0 0.028526 0.188139
1 0.000478 0.002049
2 0.007487 0.031532
3 0.017474 0.115648
4 0.000997 0.004522
I have data from training set and test set i.e. first key (X_tr and X_test). Then there are categorical variables like 'school_state', 'clean_categories' etc.
I want to create a dataframes similar to the one below for each category:
School State
Index col1 col2
0 .009099 .047694
1 .004304 .024660
......................
......................
clean_categories
Index col1 col2
..............
..............
Since it is a nested dictionary I am facing issues in performing this operation.
Can someone please suggest a workaround.
Upvotes: 0
Views: 83
Reputation: 5032
You can create multiple DataFrames
or use concat
to create a single DataFrame
The idea is to iterate the keys from the dictionary
df_dict = {'X_tr': {'school_state': col1 col2
0 0.009099 0.047694
1 0.004304 0.024660
2 0.003129 0.019796
3 0.002541 0.018430
4 0.009099 0.047694
... ... ...
73191 0.013457 0.055167
73192 0.001530 0.009481
73193 0.002869 0.015657
73194 0.002869 0.015657
73195 0.002118 0.013102
[73196 rows x 2 columns], 'clean_categories': col1 col2
0 0.028526 0.188139
1 0.000478 0.002049
2 0.007487 0.031532
3 0.017474 0.115648
4 0.000997 0.004522
Individual DataFrames for test and train
school_state_tr = df_dict['X_tr']['school_state']
clean_categories_tr = df_dict['X_tr']['clean_categories']
school_state_ts = df_dict['X_test']['school_state']
clean_categories_ts = df_dict['X_test']['clean_categories']
Single DataFrame based on categories
school_state_tr['flag'] = 'Train'
clean_categories_tr['flag'] = 'Train'
school_state_ts['flag'] = 'Test'
clean_categories_ts['flag'] = 'Test'
school_state = pd.concat([school_state_tr,school_state_ts],axis=0)
clean_categories = pd.concat([clean_categories_tr,clean_categories_ts],axis=0)
Upvotes: 1