Reputation: 79
I'm trying to get only the center retangle in this image by using connected cv2.connectedComponentsWithStats. However I don't know how to get only the center image.
My attempt was this:
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, bw = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
img = cv2.threshold(bw, 127, 255, cv2.THRESH_BINARY)[1] # ensure binary
def undesired_objects(image):
image = image.astype('uint8')
nb_components, output, stats, centroids = cv2.connectedComponentsWithStats(image, connectivity=4)
sizes = stats[:, -1]
max_label = 1
max_size = sizes[1]
for i in range(2, nb_components):
if sizes[i] > max_size:
max_label = i
max_size = sizes[i]
img2 = np.zeros(output.shape)
img2[output == max_label] = 255
cv2.imshow("Biggest component", img2)
cv2.waitKey()
undesired_objects(img)
Upvotes: 2
Views: 423
Reputation: 708
I think you should process your image better before using connectedComponentsWithStats
import cv2
import numpy as np
def threshold_gray_const(image_, rang: tuple):
return cv2.inRange(image_, rang[0], rang[1])
def reject_borders(image_):
out_image = image_.copy()
h, w = image_.shape[:2]
for row in range(h):
if out_image[row, 0] == 255:
cv2.floodFill(out_image, None, (0, row), 0)
if out_image[row, w - 1] == 255:
cv2.floodFill(out_image, None, (w - 1, row), 0)
for col in range(w):
if out_image[0, col] == 255:
cv2.floodFill(out_image, None, (col, 0), 0)
if out_image[h - 1, col] == 255:
cv2.floodFill(out_image, None, (col, h - 1), 0)
return out_image
img = cv2.imread("D:\\Downloads\\ZXo3i.png")
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# ret, bw = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
#
# img = cv2.threshold(bw, 127, 255, cv2.THRESH_BINARY)[1] # ensure binary
img = threshold_gray_const(gray, (240, 255))
img = reject_borders(img)
def undesired_objects(image):
image = image.astype('uint8')
nb_components, output, stats, centroids = cv2.connectedComponentsWithStats(image, connectivity=4)
sizes = stats[:, -1]
max_label = 1
max_size = sizes[1]
for i in range(2, nb_components):
if sizes[i] > max_size:
max_label = i
max_size = sizes[i]
img2 = np.zeros(output.shape)
img2[output == max_label] = 255
cv2.imshow("Biggest component", img2)
cv2.waitKey()
undesired_objects(img)
Upvotes: 2