Reputation: 2521
I have a large dataframe like this:
|type| qt | vol|
|----|---- | -- |
| A | 1 | 10 |
| A | 2 | 12 |
| A | 1 | 12 |
| B | 3 | 11 |
| B | 4 | 20 |
| B | 4 | 20 |
| C | 4 | 20 |
| C | 4 | 20 |
| C | 4 | 20 |
| C | 4 | 20 |
How can I transpose to the dataframe with grouping horizontally like that?
|A. |B. |C. |
|--------------|--------------|--------------|
|type| qt | vol|type| qt | vol|type| qt | vol|
|----|----| ---|----|----| ---|----|----| ---|
| A | 1 | 10 | B | 3 | 11 | C | 4 | 20 |
| A | 2 | 12 | B | 4 | 20 | C | 4 | 20 |
| A | 1 | 12 | B | 4 | 20 | C | 4 | 20 |
| C | 4 | 20 |
Upvotes: 3
Views: 169
Reputation: 150735
This is pretty much pivot by one column:
(df.assign(idx=df.groupby('type').cumcount())
.pivot(index='idx',columns='type', values=df.columns)
.swaplevel(0,1, axis=1)
.sort_index(axis=1)
)
Output:
type A B C
qt type vol qt type vol qt type vol
idx
0 1 A 10 3 B 11 4 C 20
1 2 A 12 4 B 20 4 C 20
2 1 A 12 4 B 20 4 C 20
3 NaN NaN NaN NaN NaN NaN 4 C 20
Upvotes: 2
Reputation: 71689
You can group
the dataframe on type
then create key-value pairs of groups inside a dict comprehension, finally use concat
along axis=1
and pass the optional keys
parameter to get the final result:
d = {k:g.reset_index(drop=True) for k, g in df.groupby('type')}
pd.concat(d.values(), keys=d.keys(), axis=1)
Alternatively you can use groupby
+ cumcount
to create a sequential counter per group, then create a multilevel
index having two levels where the first level is counter and second level is column type
itself, finally use stack
followed by unstack
to reshape
:
c = df.groupby('type').cumcount()
df.set_index([c, df['type'].values]).stack().unstack([1, 2])
A B C
type qt vol type qt vol type qt vol
0 A 1 10 B 3 11 C 4 20
1 A 2 12 B 4 20 C 4 20
2 A 1 12 B 4 20 C 4 20
3 NaN NaN NaN NaN NaN NaN C 4 20
Upvotes: 6