Reputation: 21
I'm trying to build a system that reads json data(schema-less) from Kafka, converts it to avro and pushes it to s3.
I have been able to achieve the json to avro conversion using KStreams and KSQL. I was wondering if the same thing is possible using Kafka Connect's custom transforms.
This is what I have tried so far:
public class JsontoAvroConverter<R extends ConnectRecord<R>> implements Transformation<R> {
public static final String OVERVIEW_DOC = "Transform Payload to Custom Format";
private static final String PURPOSE = "transforming payload";
public static final ConfigDef CONFIG_DEF = new ConfigDef();
@Override
public void configure(Map<String, ?> props) {
}
@Override
public ConfigDef config() {
return CONFIG_DEF;
}
@Override
public void close() {
}
@Override
public R apply(R record) {
Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "127.0.0.1:9092");
properties.setProperty("acks", "1");
properties.setProperty("retries", "10");
properties.setProperty("key.serializer", StringSerializer.class.getName());
properties.setProperty("value.serializer", KafkaAvroSerializer.class.getName());
properties.setProperty("schema.registry.url", "http://127.0.0.1:8081");
avro_Schema updatedSchema = makeUpdatedSchema();
return newRecord(record, updatedSchema);
}
private avro_Schema makeUpdatedSchema() {
avro_Schema.Builder avro_record = avro_Schema.newBuilder()
.setName("test")
.setTry$(1);
return avro_record.build();
}
protected Object operatingValue(R record) {
return record.value();
}
protected R newRecord(R record, avro_Schema updatedSchema) {
return record.newRecord(record.topic(), record.kafkaPartition(), record.keySchema(), record.key(), updatedSchema, record.value(), record.timestamp());
}
}
Where avro_schema is the name of my schema specified in an avsc file.
I am not sure if this is the right way to do it, but the problem I am facing is that when the newRecord() function is being called, it expects updatedSchema to be of Schema type, but I'm providing it a custom avro_Schema type.
Also, the avro_record.build() that i'm saving into updatedSchema is not really the schema but the transformed record, itself. But I cannot pass just the record topic, key(=null) and the updatedRecord to the newRecord function. It expects schema and values separately.
My questions are:
My apologies if this has already been answered, I did go through some other questions but none of them seemed to answer my doubts. Let me know if you need any other details. Thank you!
Upvotes: 1
Views: 2219
Reputation: 21
The KafkaConnect custom transformer only needs to add a schema to the incoming JSON. The sink property format.class=io.confluent.connect.s3.format.avro.AvroFormat will take care of the rest.
Without a schema, the record value is a Map and with a schema it becomes a struct. I had to modify my code as below:
@Override
public R apply(R record) {
final Map<String,?> value = requireMap(record.value(),PURPOSE);
Schema updatedSchema = makeUpdatedSchema();
final Struct updatedValue = new Struct(updatedSchema);
for (Field field : updatedSchema.fields()) {
updatedValue.put(field.name(), value.get(field.name()));
}
return newRecord(record, updatedSchema, updatedValue);
}
private Schema makeUpdatedSchema() {
final SchemaBuilder builder = SchemaBuilder.struct()
.name("json_schema")
.field("name",Schema.STRING_SCHEMA)
.field("try",Schema.INT64_SCHEMA);
return builder.build();
}
Thanks @OneCricketeer for clarifying my doubts!
Upvotes: 0