Reputation: 617
I'm trying to isolate the boundary of a city as a single part of a png. My goal is to superimpose this png to very old satellite photos.
To do this, I collected a raster file which copies the dimensions of the photos and a vector file with boundary. Then, I used rasterio :
import rasterio
from rasterio.plot import show
src = rasterio.open("my_raster.tiff")
And the equivalent with geopandas :
import geopandas as gpd
GDF = gpd.read_file("boundary.shp")
I checked that Coordinate Reference System were exactly the same between src and GDF, and then I used matplotlib to correctly put the boundary :
import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(20, 10))
show(src.read(), transform=src.transform, ax=ax)
GDF.plot(ax=ax, color='white')
plt.show()
Which showed :
That worked fine, but I couldn't save only the boundary in a png with savefig(). I tried to separate ax, with an ax1 for the raster and an ax2 for the vector, but it didn't work...
Can I save only this part of the figure ?
Upvotes: 1
Views: 1102
Reputation: 503
We can make the approach crispier by using OpenCV contours.
myfilter='example'
myfilter_raster=os.path.join(raster_path,myfilter+'.tif')
with rasterio.open(myfilter_raster) as src:
vector_df=gdf_rbb[gdf_rbb.idarpt==myfilter].copy()
out_image, out_transform = rasterio.mask.mask(src, vector_df.geometry.to_list(), crop=False)
out_meta = src.meta
out_meta.update({"driver": "PNG",
"height": out_image.shape[1],
"width": out_image.shape[2],
"transform": out_transform})
out_file=myfilter+'.png'
out_file=os.path.join(mask_images_path,out_file)
print('Generated' ,out_file)
mask = out_image[0].astype("uint8")
mask[mask > 0] = 255
border = cv2.copyMakeBorder(mask, 1, 1, 1, 1, cv2.BORDER_CONSTANT, value=0 )
contours, hierarchy = cv2.findContours(border, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE, offset=(-1, -1))
boundary_image=np.zeros(mask.shape)
for contour in contours:
cv2.drawContours(boundary_image,[contour],0,(255,255,255),3)
plt.imshow(boundary_image)
plt.show()
with rasterio.open(out_file, 'w', **out_meta) as dst:
dst.write(boundary_image , 1)
# from rasterio.plot import show
# fig, ax = plt.subplots(figsize=(20, 10))
# show(src.read(), transform=src.transform, ax=ax)
# vector_df.plot(ax=ax, color='white')
# plt.show()
Yet another simple approach os to use opencv edge detection.
myfilter='example'
myfilter_raster=os.path.join(raster_path,myfilter+'.tif')
with rasterio.open(myfilter_raster) as src:
vector_df=gdf_rbb[gdf_rbb.idarpt==myfilter].copy()
out_image, out_transform = rasterio.mask.mask(src, vector_df.geometry.to_list(), crop=False)
out_meta = src.meta
out_meta.update({"driver": "PNG",
"height": out_image.shape[1],
"width": out_image.shape[2],
"transform": out_transform})
out_file=myfilter+'2.png'
out_file=os.path.join(mask_images_path,out_file)
print('Generated' ,out_file)
mask = out_image[0].astype("uint8")
mask[mask > 0] = 255
edges = cv2.Canny(mask,100,200)
plt.subplot(121)
plt.axis('off')
plt.imshow(mask,cmap = 'gray')
plt.title('Original Image')
plt.subplot(122),
plt.imshow(edges,cmap = 'gray')
plt.title('Edge Image')
plt.show()
with rasterio.open(out_file, 'w', **out_meta) as dst:
dst.write(edges , 1)
Upvotes: 1
Reputation: 617
OK, after some searches, I saved my plot as following :
import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(20, 10))
show(src.read(), transform=src.transform, ax=ax)
GDF.plot(ax=ax, color='#fff')
ax.set_axis_off()
fig.savefig("test.png", dpi=220, bbox_inches = 'tight')
plt.show()
Then, I used PIL in a little function :
from PIL import ImageTk, Image
def only_boundary(image):
# first, convert picture as RGBA
with Image.open(image).convert("RGBA") as img:
pixels = img.load()
for i in range(img.size[0]):
for j in range(img.size[1]):
# if a pixel is not white...
if pixels[i,j] != (255, 255, 255,255):
#it becomes transparent
pixels[i,j] = (0, 0, 0, 0)
# then the loops are over, we save
im = img.save(image)
And only_boundary("test.png") saved the good result !
Upvotes: 0