Reputation: 855
I have 2 lists:
my_values = ['0,78', '0,40', '0,67']
my_list = [
['Morocco', 'Meat', '190,00', '0,15'],
['Morocco', 'Meat', '189,90', '0,32'],
['Morocco', 'Meat', '189,38', '0,44'],
['Morocco', 'Meat', '188,94', '0,60'],
['Morocco', 'Meat', '188,49', '0,78'],
['Morocco', 'Meat', '187,99', '0,101'],
['Spain', 'Meat', '190,76', '0,10'],
['Spain', 'Meat', '190,16', '0,20'],
['Spain', 'Meat', '189,56', '0,35'],
['Spain', 'Meat', '189,01', '0,40'],
['Spain', 'Meat', '188,13', '0,75'],
['Spain', 'Meat', '187,95', '0,78'],
['Italy', 'Meat', '190,20', '0,11'],
['Italy', 'Meat', '190,10', '0,31'],
['Italy', 'Meat', '189,32', '0,45'],
['Italy', 'Meat', '188,61', '0,67'],
['Italy', 'Meat', '188,01', '0,72'],
['Italy', 'Meat', '187,36', '0,80'],
]
I have a code which is checking the following:
index[2]
inmy_list
isindex[3]
in my_values == 0,78
index[2]
inmy_list
isindex[3]
in my_values == 0,40
index[2]
in my_list
isindex[3]
in my_values == 0,67
Now I have a problem, as you can see 0,78
in my_values
is present in Morocco AND Spain, I only want it to check it for Morocco.
This is my code:
yet_another_list = [i[2] for i in my_list if i[3] in my_values]
print(yet_another_list)
This is my output:
['188,49', '189,01', '187,95', '188,61']
This is my prefered output:
['188,49', '189,01', '188,61']
As you can see I want index[1]
of my_values
to be only used for Morocco
, and index[2]
for Spain
etc... Please note that in my officla dataset my_lists
contains a lot more countries...
#ADDED. I even tried Pandas but still received the same output.
df=pd.DataFrame(my_list)
df['Filter']=np.where([i in my_values for i in df[3]],"Yes","")
my_out_list=list(df[2][df['Filter']=='Yes'])
print(my_out_list)
>>
['188,49', '189,01', '187,95', '188,61']
Upvotes: 0
Views: 187
Reputation: 17156
Using original data structures with iterators.
def get_values(my_list_, *my_values_):
''' Finds the desired result using my_list_ and my_values
my_valuesis one or more list
'''
output = []
# Find values for each list in my_values_
for my_values__ in my_values_:
# Create iterators
result = []
my_values_iter = iter(my_values__) # iterator for current list of values
my_list_iter = iter(my_list_) # from beginning of my_list_
v = next(my_values_iter, None)
i = next(my_list_iter, None)
while v and i:
if v == i[3]:
# found match
result.append(i[2])
v = next(my_values_iter, None) # Next value to find in my_values
i = next(my_list_iter, None) # Next value to check in my_list
else:
# try next value from my_list
i = next(my_list_iter, None) # Next value to check in my_list
output.append(result)
if len(output) == 1:
return output[0] # Only single list
else:
return tuple(x for x in output) # Output tuple of lists
Usage
# Single list of values
a = get_values(my_list, ['0,78', '0,40', '0,67'])
print(f'a = {a}') # Output: a = ['188,49', '189,01', '188,61']
# Two list of values (can handle an arbitrary number)
a, b = get_values(my_list, ['0,78', '0,40', '0,67'], ['0,78', '0,10', '0,78'])
print(f'a = {a}, b = {b}') # Output: a = ['188,49', '189,01', '188,61'], b = ['188,49', '190,76', '187,95']
Upvotes: 1
Reputation: 189397
If I understand your requirement correctly, you want to loop over countries in the list, and simultaneously loop over the indices in the other list?
previous = my_list[0][0]
ind = 0
result = []
for item in my_list:
if item[0] != previous:
ind += 1
previous = item[0]
if item[3] == my_values[ind]:
result.append(item[2])
print(result)
This will obviously throw an IndexError
if you have more countries than values in my_values
.
Perhaps a better approach would be to turn my_list
into a dict where the keys are country names and the values are the values for that country, though.
Upvotes: 0
Reputation: 3676
I'd recommend using a dictionary and then filtering your dataset
my_values = {'Morocco': '0,78', 'Spain': '0,40', 'Italy': '0,67'}
my_list = [
['Morocco', 'Meat', '190,00', '0,15'],
['Morocco', 'Meat', '189,90', '0,32'],
['Morocco', 'Meat', '189,38', '0,44'],
['Morocco', 'Meat', '188,94', '0,60'],
['Morocco', 'Meat', '188,49', '0,78'],
['Morocco', 'Meat', '187,99', '0,101'],
['Spain', 'Meat', '190,76', '0,10'],
['Spain', 'Meat', '190,16', '0,20'],
['Spain', 'Meat', '189,56', '0,35'],
['Spain', 'Meat', '189,01', '0,40'],
['Spain', 'Meat', '188,13', '0,75'],
['Spain', 'Meat', '187,95', '0,78'],
['Italy', 'Meat', '190,20', '0,11'],
['Italy', 'Meat', '190,10', '0,31'],
['Italy', 'Meat', '189,32', '0,45'],
['Italy', 'Meat', '188,61', '0,67'],
['Italy', 'Meat', '188,01', '0,72'],
['Italy', 'Meat', '187,36', '0,80'],
]
print([e[2] for e in filter(lambda x: x[3] == my_values[x[0]], my_list)])
>>> ['188,49', '189,01', '188,61']
As a side note, if you're working with much larger data sets it might be beneficial to look at the pandas package, a popular Python library for data analysis
Upvotes: 1