Reputation: 129
I have a dataframe with gaps
temperature
data
2016-01-01 01:00:00 -8.2
2016-01-01 02:00:00 -8.3
2016-01-01 03:00:00 -9.1
2016-01-01 04:00:00 -9.1
2016-01-01 05:00:00 -9.6
... ...
2020-02-29 20:00:00 5.9
2020-02-29 21:00:00 5.4
2020-02-29 22:00:00 4.7
2020-02-29 23:00:00 4.3
2020-03-01 00:00:00 4.3
Here is the code for some sample data, different from mine but the concept is the same:
def tworzeniedaty():
import pandas as pd
rng1 = list(pd.date_range(start='2016-01-01', end='2016-02-29', freq='D'))
rng2 = list(pd.date_range(start='2016-12-15', end='2017-02-28', freq='D'))
rng3 = list(pd.date_range(start='2017-12-15', end='2018-02-28', freq='D'))
rng4 = list(pd.date_range(start='2018-12-15', end='2019-02-28', freq='D'))
rng5 = list(pd.date_range(start='2019-12-15', end='2020-02-29', freq='D'))
return rng1 + rng2 + rng3 + rng4 + rng5
import random
import pandas as pd
lista = [random.randrange(1, 10, 1) for i in range(len(tworzeniedaty()))]
df = pd.DataFrame({'Date': tworzeniedaty(), 'temperature': lista})
df['Date'] = pd.to_datetime(df['Date'], format="%Y/%m/%d")
When I plot the data I get a very messy plot.
Instead I would like to get:
It is the same question as How to plot only specific months in a time series of several years? but I would like to do it in python and can't decipher R code.
Upvotes: 1
Views: 301
Reputation: 12410
We can group the data by calculating the difference between dates and checking if it exceeds a limit like three months:
from matplotlib import pyplot as plt
import random
import pandas as pd
def tworzeniedaty():
rng1 = list(pd.date_range(start='2016-01-01', end='2016-02-29', freq='D'))
rng2 = list(pd.date_range(start='2016-12-15', end='2017-02-28', freq='D'))
rng3 = list(pd.date_range(start='2017-12-15', end='2018-02-28', freq='D'))
rng4 = list(pd.date_range(start='2018-12-15', end='2019-02-28', freq='D'))
rng5 = list(pd.date_range(start='2019-12-15', end='2020-02-29', freq='D'))
return rng1 + rng2 + rng3 + rng4 + rng5
lista = [random.randrange(1, 10, 1) for i in range(len(tworzeniedaty()))]
df = pd.DataFrame({'Date': tworzeniedaty(), 'temperature': lista})
#assuming that the df is sorted by date, we look for gaps of more than 3 months
#then we label the groups with consecutive numbers
df["groups"] = (df["Date"].dt.month.diff() > 3).cumsum()
n = 1 + df["groups"].max()
#creating the desired number of subplots
fig, axes = plt.subplots(1, n, figsize=(15, 5), sharey=True)
#plotting each group into a subplot
for (i, group_df), ax in zip(df.groupby("groups"), axes.flat):
ax.plot(group_df["Date"], group_df["temperature"])
fig.autofmt_xdate(rotation=45)
plt.tight_layout()
plt.show()
Sample output:
Obviously, some fine-tuning is necessary if more groups should exist. In this case, a grid would be appropriate - one can create a subplot grid and remove unnecessary subplots like in this matplotlib example. The x-labels probably also need some adjustment with a matplotlib Locator and Formatter for better appearance. Some of this can be automated using the grouping variable with hue
in seaborn; however, this may lead to a different set of problems.
Upvotes: 2
Reputation: 1204
The best approach I think is to filter out Jun/Jul/Aug data, as done in the R code. This should help:
def tworzeniedaty():
import pandas as pd
rng1 = list(pd.date_range(start='2016-01-01', end='2016-02-29', freq='D'))
rng2 = list(pd.date_range(start='2016-12-15', end='2017-02-28', freq='D'))
rng3 = list(pd.date_range(start='2017-12-15', end='2018-02-28', freq='D'))
rng4 = list(pd.date_range(start='2018-12-15', end='2019-02-28', freq='D'))
rng5 = list(pd.date_range(start='2019-12-15', end='2020-02-29', freq='D'))
return rng1 + rng2 + rng3 + rng4 + rng5
import random
import pandas as pd
import matplotlib.pyplot as plt
lista = [random.randrange(1, 10, 1) for i in range(len(tworzeniedaty()))]
df = pd.DataFrame({'Date': tworzeniedaty(), 'temperature': lista})
df['Date'] = pd.to_datetime(df['Date'], format="%Y/%m/%d")
years = list(set(df.Date.dt.year))
fig, ax = plt.subplots(1, len(years))
for i in years:
df_set = df[df.Date.dt.year == i]
df_set.set_index("Date", inplace = True)
df_set.index = df_set.index.map(str)
ax[years.index(i)].plot(df_set)
ax[years.index(i)].title.set_text(i)
plt.show()
Upvotes: 1