Reputation: 51
I need your help to understand why my readFromWorker
func lead to deadlock. When I comment out lines like below it works correctly (thus I know the problem is here).
The whole is here https://play.golang.org/p/-0mRDAeD2tr
I would really appreciate your help
func readFromWorker(inCh <-chan *data, wg *sync.WaitGroup) {
defer func() {
wg.Done()
}()
//stageIn1 := make(chan *data)
//stageOut1 := make(chan *data)
for v := range inCh {
fmt.Println("v", v)
//stageIn1 <- v
}
//go stage1(stageIn1, stageOut1)
//go stage2(stageOut1)
}
Upvotes: 0
Views: 148
Reputation: 4204
I've commented on the relevant parts where you were doing it wrong. Also, I'd recommend thinking of a better pattern.
Do remember that for range
on channels doesn't stop looping unless close
is called for the same channel it's looping on. Also, the rule of thumb of closing a channel is that the sender sending to the channel must also close it because sending to a closed channel causes panic
.
Also, be very careful when using unbuffered and buffered channels. For unbuffered channels, the sender and receiver must be ready otherwise there would be a deadlock which happened in your case as well.
package main
import (
"fmt"
"sync"
)
type data struct {
id int
url string
field int
}
type job struct {
id int
url string
}
func sendToWorker(id int, inCh <-chan job, outCh chan<- *data, wg *sync.WaitGroup) {
// wg.Done() is itself a function call, no need to wrap it inside
// an anonymous function just to use defer.
defer wg.Done()
for v := range inCh {
// some pre process stuff and then pass to pipeline
outCh <- &data{id: v.id, url: v.url}
}
}
func readFromWorker(inCh <-chan *data, wg *sync.WaitGroup) {
// wg.Done() is itself a function call, no need to wrap it inside
// an anonymous function just to use defer.
defer wg.Done()
var (
stageIn1 = make(chan *data)
stageOut1 = make(chan *data)
)
// Spawn the goroutines so that there's no deadlock
// as the sender and receiver both should be ready
// when using unbuffered channels.
go stage1(stageIn1, stageOut1)
go stage2(stageOut1)
for v := range inCh {
fmt.Println("v", v)
stageIn1 <- v
}
close(stageIn1)
}
func stage1(in <-chan *data, out chan<- *data) {
for s := range in {
fmt.Println("stage1 = ", s)
out <- s
}
// Close the out channel
close(out)
}
func stage2(out <-chan *data) {
// Loop until close
for s := range out {
fmt.Println("stage2 = ", s)
}
}
func main() {
const chanBuffer = 1
var (
inputsCh = make(chan job, chanBuffer)
resultsCh = make(chan *data, chanBuffer)
wgInput sync.WaitGroup
wgResult sync.WaitGroup
)
for i := 1; i <= 4; i++ {
wgInput.Add(1)
go sendToWorker(i, inputsCh, resultsCh, &wgInput)
}
wgResult.Add(1)
go readFromWorker(resultsCh, &wgResult)
for j := 1; j <= 10; j++ {
inputsCh <- job{id: j, url: "google.com"}
}
close(inputsCh)
wgInput.Wait()
close(resultsCh)
wgResult.Wait()
}
Upvotes: 1