Reputation: 145
I hv the following dataframe:
A B C D E F
100 0 0 0 100 0
0 100 0 0 0 100
-100 0 0 0 100 0
and this code:
cond = [
(df['A'] == 100),
(df['A'] == -100),
(df['B'] == 100),
(df['C'] == 100),
(df['D'] == 100),
(df['E'] == 100),
(df['F'] == 100),
]
choices = ['A','neg_A', 'B', 'C','D', 'E', 'F']
df['result'] = np.select(cond, choices)
For both rows there will be two results but I want only one to be selected. I want the selection to be made with this criteria:
+A = 67%
-A = 68%
B = 70%
C = 75%
D = 66%
E = 54%
F = 98%
Percentage shows accuracy rate so i would want the one with highest percentage to be preferred over the other.
Intended result:
A B C D E F result
100 0 0 0 100 0 A
0 100 0 0 0 100 F
-100 0 0 0 100 0 neg_A
Little help will be appreciated. THANKS!
EDIT:
Some of the columns (like A) may have a mix of 100 and -100. Positive 100 will yield a simple A (see row 1) but a -100 should yield some other name like "neg_A" in the result (see row 3).
Upvotes: 3
Views: 189
Reputation: 71689
Let's sort
the columns of dataframe based on the priority
values then use .eq
+ .idxmax
on axis=1
to get the column name with first occurrence of 100
:
# define a dict with col names and priority values
d = {'A': .67, 'B': .70, 'C': .75, 'D': .66, 'E': .54, 'F': .98}
df['result'] = df[sorted(d, key=lambda x: -d[x])].eq(100).idxmax(axis=1)
A B C D E F result
0 100 0 0 0 100 0 A
1 0 100 0 0 0 100 F
Upvotes: 2