Reputation: 2331
I am trying to plot a fourier transform of a sign wave based on the scipy documentation
import numpy as np
import matplotlib.pyplot as plt
import scipy.fft
def sinWav(amp, freq, time, phase=0):
return amp * np.sin(2 * np.pi * (freq * time - phase))
def plotFFT(f, speriod, time):
"""Plots a fast fourier transform
Args:
f (np.arr): A signal wave
speriod (int): Number of samples per second
time ([type]): total seconds in wave
"""
N = speriod * time
# sample spacing
T = 1.0 / 800.0
x = np.linspace(0.0, N*T, N, endpoint=False)
yf = scipy.fft.fft(f)
xf = scipy.fft.fftfreq(N, T)[:N//2]
plt.plot(xf, 2.0/N * np.abs(yf[0:N//2]))
plt.grid()
plt.xlim([1,3])
plt.show()
speriod = 1000
time = {
0: np.arange(0, 4, 1/speriod),
1: np.arange(4, 8, 1/speriod),
2: np.arange(8, 12, 1/speriod)
}
signal = np.concatenate([
sinWav(amp=0.25, freq=2, time=time[0]),
sinWav(amp=1, freq=2, time=time[1]),
sinWav(amp=0.5, freq=2, time=time[2])
]) # generate signal
plotFFT(signal, speriod, 12)
Desired output
I want to be getting a fourier transform graph which looks like this
Current output
But instead it looks like this
Extra
This is the sin wave I am working with
Upvotes: 0
Views: 675
Reputation: 1420
You can also interactively plot this. You may need to install the pip install scikit-dsp-comm
# !pip install scikit-dsp-comm
# Make an interactive version of the above
from ipywidgets import interact, interactive
import numpy as np
import matplotlib.pyplot as plt
from scipy import fftpack
plt.rcParams['figure.figsize'] = [10, 8]
font = {'weight' : 'bold',
'size' : 14}
plt.rc('font', **font)
def pulse_plot(fm = 1000, Fs = 2010):
tlen = 1.0 # length in seconds
# generate time axis
tt = np.arange(np.round(tlen*Fs))/float(Fs)
# generate sine
xt = np.sin(2*np.pi*fm*tt)
plt.subplot(211)
plt.plot(tt[:500], xt[:500], '-b')
plt.plot(tt[:500], xt[:500], 'or', label='xt values')
plt.ylabel('$x(t)$')
plt.xlabel('t [sec]')
strt2 = 'Sinusoidal Waveform $x(t)$'
strt2 = strt2 + ', $f_m={}$ Hz, $F_s={}$ Hz'.format(fm, Fs)
plt.title(strt2)
plt.legend()
plt.grid()
X = fftpack.fft(xt)
freqs = fftpack.fftfreq(len(xt)) * Fs
plt.subplot(212)
N = xt.size
# DFT
X = np.fft.fft(xt)
X_db = 20*np.log10(2*np.abs(X)/N)
#f = np.fft.fftfreq(N, 1/Fs)
f = np.arange(0, N)*Fs/N
plt.plot(f, X_db, 'b')
plt.xlabel('Frequency in Hertz [Hz]')
plt.ylabel('Frequency Domain\n (Spectrum) Magnitude')
plt.grid()
plt.tight_layout()
interactive_plot = interactive(pulse_plot,fm = (1000,20000,1000), Fs = (1000,40000,10));
output = interactive_plot.children[-1]
# output.layout.height = '350px'
interactive_plot
Upvotes: 0
Reputation: 6090
import numpy as np
import matplotlib.pyplot as plt
import scipy.fft
def sinWav(amp, freq, time, phase=0):
return amp * np.sin(2 * np.pi * (freq * time - phase))
def plotFFT(f, speriod, time):
"""Plots a fast fourier transform
Args:
f (np.arr): A signal wave
speriod (int): Number of samples per second
time ([type]): total seconds in wave
"""
N = speriod * time
# sample spacing
T = 1.0 / 800.0
x = np.linspace(0.0, N*T, N, endpoint=False)
yf = scipy.fft.fft(f)
xf = scipy.fft.fftfreq(N, T)[:N//2]
amplitudes = 1/speriod* np.abs(yf[:N//2])
plt.plot(xf, amplitudes)
plt.grid()
plt.xlim([1,3])
plt.show()
speriod = 800
time = {
0: np.arange(0, 4, 1/speriod),
1: np.arange(4, 8, 1/speriod),
2: np.arange(8, 12, 1/speriod)
}
signal = np.concatenate([
sinWav(amp=0.25, freq=2, time=time[0]),
sinWav(amp=1, freq=2, time=time[1]),
sinWav(amp=0.5, freq=2, time=time[2])
]) # generate signal
plotFFT(signal, speriod, 12)
You should have what you want. Your amplitudes were not properly computed, as your resolution and speriod were inconsistent.
Longer data acquisition:
import numpy as np
import matplotlib.pyplot as plt
import scipy.fft
def sinWav(amp, freq, time, phase=0):
return amp * np.sin(2 * np.pi * (freq * time - phase))
def plotFFT(f, speriod, time):
"""Plots a fast fourier transform
Args:
f (np.arr): A signal wave
speriod (int): Number of samples per second
time ([type]): total seconds in wave
"""
N = speriod * time
# sample spacing
T = 1.0 / 800.0
x = np.linspace(0.0, N*T, N, endpoint=False)
yf = scipy.fft.fft(f)
xf = scipy.fft.fftfreq(N, T)[:N//2]
amplitudes = 1/(speriod*4)* np.abs(yf[:N//2])
plt.plot(xf, amplitudes)
plt.grid()
plt.xlim([1,3])
plt.show()
speriod = 800
time = {
0: np.arange(0, 4*4, 1/speriod),
1: np.arange(4*4, 8*4, 1/speriod),
2: np.arange(8*4, 12*4, 1/speriod)
}
signal = np.concatenate([
sinWav(amp=0.25, freq=2, time=time[0]),
sinWav(amp=1, freq=2, time=time[1]),
sinWav(amp=0.5, freq=2, time=time[2])
]) # generate signal
plotFFT(signal, speriod, 48)
Upvotes: 1