Reputation: 52
I have tried removing every set_xticks, or grids options and just plotting the data frame and I cannot get the X-axis to stop skipping years.
The index is DateTime stamps YYYY-MM-DD, and the columns are all floats.
ax = Export_DF.plot.area()
ax.grid(color='black',alpha=.3)
ax.grid(which='minor', linestyle=':', linewidth='0.5', color='black')
major_ticks = np.arange(0, 101, 20)
minor_ticks = np.arange(0, 101, 5)
ax.set_yticks(major_ticks)
ax.set_yticks(minor_ticks, minor=True)
X_Dates = []
for i in range(12):
X_Dates.append(pd.to_datetime('1/1/'+str(2010+i)))
ax.xticks(X_Dates)
ax.set_xticks(X_Dates,minor=True)
ax.grid(which='minor', alpha=0.3)
ax.grid(which='major', alpha=0.5)
handles, labels = ax.get_legend_handles_labels()
ax.legend(reversed(handles), reversed(labels),bbox_to_anchor=(1.02, 1)) # reverse both handles and labels
for i in range(len(Export_DF)):
temp_series = Export_DF.iloc[i]
temp_x_cord = temp_series.name
count = [0]
for j in temp_series:
if j != 0:
count.append(count[-1]+j)
ax.annotate(str(round(j,1)),(temp_x_cord,(count[-1]+count[-2])/2),size=8,ha='center')
plt.show()
Upvotes: 0
Views: 1973
Reputation: 62493
matplotlib.dates
should be used.datemin
and datemax
must be in a datetime format to be recognized by the DateFormatter
. As such, use np.datetime64(data.index.array[0], 'Y')
, which results in numpy.datetime64('2021')
, where as data.index.year.min()
results in an int
.import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import numpy as np
import pandas as pd
# create a sample dataframe
data = pd.DataFrame({'v1': [10]*4000, 'v2': [20]*4000}, index=pd.bdate_range('2021-01-11', freq='D', periods=4000))
years = mdates.YearLocator() # every year
years_fmt = mdates.DateFormatter('%Y')
# create the plot
ax = data.plot.area(x='date', figsize=(8, 6))
# format the ticks only for years on the major ticks
ax.xaxis.set_major_locator(years)
ax.xaxis.set_major_formatter(years_fmt)
# round to nearest years. Also, the index must be sorted and in a datetime format.
datemin = np.datetime64(data.index.array[0], 'Y')
datemax = np.datetime64(data.index.array[-1], 'Y') + np.timedelta64(1, 'Y')
# set the x-axis limits
ax.set_xlim(datemin, datemax)
# turn the grid on, if desired
ax.grid(True)
plt.show()
ax = data.plot.area(figsize=(8, 6))
Upvotes: 1