Reputation: 4398
I have a dataframe, df, where I would like specific separations of values within my column to display the first word and the number along with its 'T' value. I would like the first 'word' that is separated by '-', and its #T value. With the exception of 'Azure' case, where the first word is separated by '_'
It is tricky because some of the #T values are separated by '-', while others are separated by '_' ex. -12T in one of the values , as well as _14T in another value I would like to maintain the original values in the type column
data = {'type': ['Azure_Standard_E64is_v4_SPECIAL_DB-A.0', 'Azure_Standard_E64is_v4_SPECIAL_DB-A.0', 'Hello-HEL-HE-A6123-123A-12T_TYPE-v.A', 'Hello-HEL-HE-A6123-123A-12T_TYPE-v.E', 'Hello-HEL-HE-A6123-123A-50T_TYPE-v.C', 'Hello-HEL-HE-A6123-123A-50T_TYPE-v.A', 'Happy-HAP-HA-R650-570A-90T_version-v.A', 'Kind-KIN-KI-T490-NET_14T-A.0', 'Kind-KIN-KI-T490-NET_14T-A.0', 'AY14.5-fyy-FY-R770-256G-6.4T-R1-v.A', 'AY14.5-fyy-FY-R770-256G-6.4T-R1-v.A'], 'free': [6, 5, 10, 5, 1, 2, 10, 7, 6, 3, 0], 'use': [1, 1, 10, 1, 4, 1, 0, 4, 3, 0, 20], 'total': [7, 6, 20, 6, 5, 1, 10, 3, 2, 3, 20]}
df = pd.DataFrame(data)
type free use total
0 Azure_Standard_E64is_v4_SPECIAL_DB-A.0 6 1 7
1 Azure_Standard_E64is_v4_SPECIAL_DB-A.0 5 1 6
2 Hello-HEL-HE-A6123-123A-12T_TYPE-v.A 10 10 20
3 Hello-HEL-HE-A6123-123A-12T_TYPE-v.E 5 1 6
4 Hello-HEL-HE-A6123-123A-50T_TYPE-v.C 1 4 5
5 Hello-HEL-HE-A6123-123A-50T_TYPE-v.A 2 1 1
6 Happy-HAP-HA-R650-570A-90T_version-v.A 10 0 10
7 Kind-KIN-KI-T490-NET_14T-A.0 7 4 3
8 Kind-KIN-KI-T490-NET_14T-A.0 6 3 2
9 AY14.5-fyy-FY-R770-256G-6.4T-R1-v.A 3 0 3
10 AY14.5-fyy-FY-R770-256G-6.4T-R1-v.A 0 20 20
Desired:
Name type free use total
Azure_Standard_E64is_v4_SPECIAL_DB-A.0 Azure 6 1 7
Azure_Standard_E64is_v4_SPECIAL_DB-A.0 Azure 5 1 6
Hello-HEL-HE-A6123-123A-12T_TYPE-v.A Hello 12T 10 10 20
Hello-HEL-HE-A6123-123A-12T_TYPE-v.E Hello 12T 5 1 6
Hello-HEL-HE-A6123-123A-50T_TYPE-v.C Hello 50T 1 4 5
Hello-HEL-HE-A6123-123A-50T_TYPE-v.A Hello 50T 2 1 1
Happy-HAP-HA-R650-570A-90T_version-v.A Happy 90T 10 0 10
Kind-KIN-KI-T490-NET_14T-A.0 Kind 14T 7 4 3
Kind-KIN-KI-T490-NET_14T-A.0 Kind 14T 6 3 2
AY14.5-fyy-FY-R770-256G-6.4T-R1-v.A AY14.5 6.4T 3 0 3
AY14.5-fyy-FY-R770-256G-6.4T-R1-v.A AY14.5 6.4T 0 20 20
Doing:
df['type']= df['type'].str.extract(r'(^\w+.\d|^\w+)')+' '+df['type'].str.extract(r'(\d.\d+T|\d+T)')
This works below, however, the 'AZURE' value disappears, and the original value is not maintained. I am still researching this, any assistance is appreciated.
Upvotes: 2
Views: 179
Reputation: 862771
You can use Series.str.replace
with Series.str.cat
and last add Series.str.strip
, also is added expand=False
to Series.str.extract
for Series
.
For new column for second position is used DataFrame.insert
.
s = (df['type'].str.replace('_','-')
.str.extract(r'(^\w+.\d|^\w+)', expand=False)
.str.cat(df['type'].str.extract(r'(\d.\d+T|\d+T)', expand=False),
sep=' ',
na_rep='')
.str.strip())
Thank you @Trenton McKinney for another solution - splitting values and get first one values of lists:
s = (df['type'].str.split('_|-')
.str[0]
.str.cat(df['type'].str.extract(r'(\d.\d+T|\d+T)', expand=False),
sep=' ',
na_rep='')
.str.strip())
df = df.rename(columns={'type': 'Name'})
df.insert(1, 'type', s)
print (df)
Name type free use total
0 Azure_Standard_E64is_v4_SPECIAL_DB-A.0 Azure 6 1 7
1 Azure_Standard_E64is_v4_SPECIAL_DB-A.0 Azure 5 1 6
2 Hello-HEL-HE-A6123-123A-12T_TYPE-v.A Hello 12T 10 10 20
3 Hello-HEL-HE-A6123-123A-12T_TYPE-v.E Hello 12T 5 1 6
4 Hello-HEL-HE-A6123-123A-50T_TYPE-v.C Hello 50T 1 4 5
5 Hello-HEL-HE-A6123-123A-50T_TYPE-v.A Hello 50T 2 1 1
6 Happy-HAP-HA-R650-570A-90T_version-v.A Happy 90T 10 0 10
7 Kind-KIN-KI-T490-NET_14T-A.0 Kind 14T 7 4 3
8 Kind-KIN-KI-T490-NET_14T-A.0 Kind 14T 6 3 2
9 AY14.5-fyy-FY-R770-256G-6.4T-R1-v.A AY14.5 6.4T 3 0 3
10 AY14.5-fyy-FY-R770-256G-6.4T-R1-v.A AY14.5 6.4T 0 20 20
Upvotes: 2