Reputation: 11
import sys
from os import listdir, sep
import numpy as np
import pickle
from PIL import Image
import cv2
from sklearn.ensemble import RandomForestClassifier
import numpy as np
from PIL import Image
DEFAULT_IMAGE_SIZE = (45,45)
SPLIT_POINT_COEFF = 0.8
class PredictionService:
def __init__(self):
#self.dataset = datasetDIR
#self.testImage = testImage
pass
def getImageVector(self, image):
try:
#NOTE:from docs
#When translating a color image to black and white (mode “L”), the library uses the ITU-R 601-2 luma transform:
#L = R * 299/1000 + G * 587/1000 + B * 114/1000
imageGrayscale = Image.open(image).convert('L')
#resize image to default image size - 45 x 45
imageGrayscale = imageGrayscale.resize(DEFAULT_IMAGE_SIZE, Image.ANTIALIAS)
#
imageNP = np.array(imageGrayscale)
imgList = []
for line in imageNP:
for value in line:
imgList.append(value)
#imgList is 2025 long vector
return imgList
except Exception as e:
print("Error : {}".format(e))
return None
def addImagesToSet(self, rootPath, imageList, label, completeImageList = [], labelList = []):
dashes = ['-','/','-','\\']
counter = 0
for image in imageList:
print('[{}] Images loading...'.format(dashes[counter]))
counter = (counter + 1) % len(dashes)
completeImageList.append(self.getImageVector(rootPath + image))
labelList.append(label)
def getTrainingAndTestData(self, directoryPath):
dirList = listdir(directoryPath)
xTrain, yTrain, xTest, yTest = [], [], [], []
try:
if len(dirList) < 1:
return None
imageDirPath = None
counter = 1
for directory in dirList:
imageDir = listdir('{}/{}'.format(directoryPath, directory))
splitPoint = int(SPLIT_POINT_COEFF * len(imageDir))
print('[{}] Loading dataset - {} images'.format(counter, directory))
counter += 1
trainImages, testImages = imageDir[:splitPoint], imageDir[splitPoint:]
imageDirPath = directoryPath + sep + directory + sep
self.addImagesToSet(imageDirPath, trainImages, directory, xTrain, yTrain)
self.addImagesToSet(imageDirPath, testImages, directory, xTest, yTest)
except Exception as e:
print('Error: {}'.format(e))
return [],[],[],[]
return xTrain, yTrain, xTest, yTest
def trainModel(self, trainDatasetDir):
train_dataset_dir = ('C:/Users/MUTHU/Documents/GitHub/Handwritten-math-symbols-recognition/Dataset')
print('Training.....')
xTrain, yTrain, xTest , yTest = self.getTrainingAndTestData(trainDatasetDir)
if [] not in (xTrain, yTrain, xTest , yTest):
randomForestClassifier = RandomForestClassifier()
randomForestClassifier.fit(xTrain,yTrain)
accuracyScore = randomForestClassifier.score(xTrain,yTrain)
# save classifier
pickle.dump(randomForestClassifier,open("Model/math_recognition_model.pkl",'wb'))
print("Model Accuracy Score : {}".format(accuracyScore))
testAccuracyScore = randomForestClassifier.score(xTest,yTest)
print("Model Accuracy Score (Test) : {}".format(testAccuracyScore))
else :
print("An error occurred.")
def predict(self, imagePath):
try:
image = [self.getImageVector(imagePath)]
# load saved model
try:
decisionTreeClassifierModel= pickle.load(open("Model/random_forest_classifier.pkl",'rb'))
modelPrediction = decisionTreeClassifierModel.predict(image)
print(modelPrediction)
print("Recognized expression:" + str(modelPrediction[0]))
except FileNotFoundError as modelFileError:
print("Error : {}".format(modelFileError))
self.trainModel(datasetDir)
self.predict(imagePath)
except FileNotFoundError as fileError:
print("Error : {}".format(fileError))
except Exception as e:
print("Error : {}".format(e))
please help me to sort this problem iam using pycharam
Upvotes: 0
Views: 614
Reputation: 409
You need to import it separately in your project. To do that you can refer below link : https://www.jetbrains.com/pycharm/guide/tips/install-and-import/
Also update your pycharm to its newest version of 2020.1.5 from the menu option go to Help -> Check for updates -> option will pop-up at right hand side below to update it
Upvotes: 1