Reputation: 57
I'm examining this code as preparation for my test and I'm having some problems figuring out what is the correct time complexity:
a = 1;
while (a < n) {
b = 1;
while (b < a^2)
b++;
a = a*2;
}
The values for a
are as follows : 1, 2, 4, 8, ... , 2^(logn) = n
Therefore we have logn
iterations for the outer loop.
In every nested loop, there are a^2
iterations, so basically what I've come up with is:
T(n) = 1 + 4 + 16 + 64 + ... + (2^logn)^2
I'm having problems finding the general term of this series and therefore getting to a final result. (maybe due to being completely off in my calculations though)
Would appreciate any help, thank you.
Upvotes: 0
Views: 49
Reputation: 1842
Your calculations are alright, you are correct with your analysis of the inner while-loop. We can demonstrate this with a small table:
This is basically the sum of a geometric progression with:
a1 = 1, q = 4, #n = lg n + 1
Where #n
is the number of elements.
We have: Sn = 1 * (4^(lgn +1) - 1)/(4-3) = (4*n^2 - 1)/3
Thus we can say your code running complexity is Θ(n^2)
Mathematical explanation in LaTeX:
Upvotes: 1