Reputation: 5932
I am new on deep learning. To practicing I trained a simple Handwriting model with tensor-flow and mnist. After loading mnist I made model and trained that:
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
x_train = x_train.astype('float32')/255
x_test = x_test.astype('float32')/255
model = keras.Sequential([
keras.layers.Flatten(input_shape=(28,28)),
keras.layers.Dense(100,activation = 'relu'),
keras.layers.Dense(100,activation = 'sigmoid'),
keras.layers.Dense(10,activation = 'sigmoid'),
])
As you can see, I flatted my first layer into 784 px One-dimensional array.
I reshape my test data too:
x_test_flattened = x_test.reshape(len(x_test),28*28)
Now, In predict I want to import just one data into model to test it:
y_predicted = model.predict(x_test_flattened[0])
but I got these errors:
WARNING:tensorflow:Model was constructed with shape (None, 28, 28) for input Tensor("flatten_input:0", shape=(None, 28, 28), dtype=float32), but it was called on an input with incompatible shape (None, 1).
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-13-1bdc43d66a07> in <module>
----> 1 y_predicted = model.predict(x_test_flattened[0])
2 # y_predicted[1]
~/anaconda3/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py in _method_wrapper(self, *args, **kwargs)
86 raise ValueError('{} is not supported in multi-worker mode.'.format(
87 method.__name__))
---> 88 return method(self, *args, **kwargs)
89
90 return tf_decorator.make_decorator(
~/anaconda3/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py in predict(self, x, batch_size, verbose, steps, callbacks, max_queue_size, workers, use_multiprocessing)
1266 for step in data_handler.steps():
1267 callbacks.on_predict_batch_begin(step)
-> 1268 tmp_batch_outputs = predict_function(iterator)
1269 # Catch OutOfRangeError for Datasets of unknown size.
1270 # This blocks until the batch has finished executing.
~/anaconda3/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py in __call__(self, *args, **kwds)
578 xla_context.Exit()
579 else:
--> 580 result = self._call(*args, **kwds)
581
582 if tracing_count == self._get_tracing_count():
~/anaconda3/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py in _call(self, *args, **kwds)
625 # This is the first call of __call__, so we have to initialize.
626 initializers = []
--> 627 self._initialize(args, kwds, add_initializers_to=initializers)
628 finally:
629 # At this point we know that the initialization is complete (or less
~/anaconda3/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py in _initialize(self, args, kwds, add_initializers_to)
503 self._graph_deleter = FunctionDeleter(self._lifted_initializer_graph)
504 self._concrete_stateful_fn = (
--> 505 self._stateful_fn._get_concrete_function_internal_garbage_collected( # pylint: disable=protected-access
506 *args, **kwds))
507
~/anaconda3/lib/python3.8/site-packages/tensorflow/python/eager/function.py in _get_concrete_function_internal_garbage_collected(self, *args, **kwargs)
2444 args, kwargs = None, None
2445 with self._lock:
-> 2446 graph_function, _, _ = self._maybe_define_function(args, kwargs)
2447 return graph_function
2448
~/anaconda3/lib/python3.8/site-packages/tensorflow/python/eager/function.py in _maybe_define_function(self, args, kwargs)
2775
2776 self._function_cache.missed.add(call_context_key)
-> 2777 graph_function = self._create_graph_function(args, kwargs)
2778 self._function_cache.primary[cache_key] = graph_function
2779 return graph_function, args, kwargs
~/anaconda3/lib/python3.8/site-packages/tensorflow/python/eager/function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)
2655 arg_names = base_arg_names + missing_arg_names
2656 graph_function = ConcreteFunction(
-> 2657 func_graph_module.func_graph_from_py_func(
2658 self._name,
2659 self._python_function,
~/anaconda3/lib/python3.8/site-packages/tensorflow/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
979 _, original_func = tf_decorator.unwrap(python_func)
980
--> 981 func_outputs = python_func(*func_args, **func_kwargs)
982
983 # invariant: `func_outputs` contains only Tensors, CompositeTensors,
~/anaconda3/lib/python3.8/site-packages/tensorflow/python/eager/def_function.py in wrapped_fn(*args, **kwds)
439 # __wrapped__ allows AutoGraph to swap in a converted function. We give
440 # the function a weak reference to itself to avoid a reference cycle.
--> 441 return weak_wrapped_fn().__wrapped__(*args, **kwds)
442 weak_wrapped_fn = weakref.ref(wrapped_fn)
443
~/anaconda3/lib/python3.8/site-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs)
966 except Exception as e: # pylint:disable=broad-except
967 if hasattr(e, "ag_error_metadata"):
--> 968 raise e.ag_error_metadata.to_exception(e)
969 else:
970 raise
ValueError: in user code:
/home/Alt/anaconda3/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:1147 predict_function *
outputs = self.distribute_strategy.run(
/home/Alt/anaconda3/lib/python3.8/site-packages/tensorflow/python/distribute/distribute_lib.py:951 run **
return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
/home/Alt/anaconda3/lib/python3.8/site-packages/tensorflow/python/distribute/distribute_lib.py:2290 call_for_each_replica
return self._call_for_each_replica(fn, args, kwargs)
/home/Alt/anaconda3/lib/python3.8/site-packages/tensorflow/python/distribute/distribute_lib.py:2649 _call_for_each_replica
return fn(*args, **kwargs)
/home/Alt/anaconda3/lib/python3.8/site-packages/tensorflow/python/keras/engine/training.py:1122 predict_step **
return self(x, training=False)
/home/Alt/anaconda3/lib/python3.8/site-packages/tensorflow/python/keras/engine/base_layer.py:927 __call__
outputs = call_fn(cast_inputs, *args, **kwargs)
/home/Alt/anaconda3/lib/python3.8/site-packages/tensorflow/python/keras/engine/sequential.py:277 call
return super(Sequential, self).call(inputs, training=training, mask=mask)
/home/Alt/anaconda3/lib/python3.8/site-packages/tensorflow/python/keras/engine/network.py:717 call
return self._run_internal_graph(
/home/Alt/anaconda3/lib/python3.8/site-packages/tensorflow/python/keras/engine/network.py:888 _run_internal_graph
output_tensors = layer(computed_tensors, **kwargs)
/home/Alt/anaconda3/lib/python3.8/site-packages/tensorflow/python/keras/engine/base_layer.py:885 __call__
input_spec.assert_input_compatibility(self.input_spec, inputs,
/home/Alt/anaconda3/lib/python3.8/site-packages/tensorflow/python/keras/engine/input_spec.py:212 assert_input_compatibility
raise ValueError(
ValueError: Input 0 of layer dense is incompatible with the layer: expected axis -1 of input shape to have value 784 but received input with shape [None, 1]
But when I import all flatted x_test data everything is good
y_predicted = model.predict(x_test_flattened)
y_predicted[1]
array([6.1507606e-08, 1.2000690e-05, 5.1280117e-01, 1.5896080e-06,
2.6905557e-08, 2.2364643e-06, 1.0007229e-06, 6.0152153e-08,
2.0705515e-05, 2.9885057e-09], dtype=float32)
How Can I test just one data?
Upvotes: 0
Views: 46
Reputation: 1070
predict always takes a "batch" so you need to make sure your single item "becomes" a batch. Just do
y_predicted = model.predict(tf.expand_dims(x_test_flattened[0], axis=0))
Upvotes: 1