Reputation: 4152
I am trying to build a NER
model in Keras
using ELMO
Embeddings. SO I stumped across this tutorial and started implementing. I got lots of errors and some of them are as:
import tensorflow as tf
import tensorflow_hub as hub
from keras import backend as K
sess = tf.Session()
K.set_session(sess)
elmo_model = hub.Module("https://tfhub.dev/google/elmo/2", trainable=True)
sess.run(tf.global_variables_initializer())
sess.run(tf.tables_initializer())
def ElmoEmbedding(x):
return elmo_model(inputs={"tokens": tf.squeeze(tf.cast(x, tf.string)),
"sequence_len": tf.constant(batch_size*[max_len])},signature="tokens",as_dict=True)["elmo"]
input_text = Input(shape=(max_len,), dtype=tf.string)
embedding = Lambda(ElmoEmbedding, output_shape=(None, 1024))(input_text)
It gives me AttributeError: module 'tensorflow' has no attribute 'Session'
. So if I comment out sess=
code and run, it gives me AttributeError: module 'keras.backend' has no attribute 'set_session'
.
Then again, Elmo
code line is giving me RuntimeError: Exporting/importing meta graphs is not supported when eager execution is enabled. No graph exists when eager execution is enabled.
.
I have the following configurations:
tf.__version__
'2.3.1'
keras.__version__
'2.4.3'
import sys
sys.version
'3.8.3 (default, Jul 2 2020, 17:30:36) [MSC v.1916 64 bit (AMD64)]'
How can I use ELMO
Embeddings in Keras Model?
Upvotes: 1
Views: 672
Reputation: 526
You are using the old Tensorflow 1.x syntax but you have tensorflow 2 installed.
This is the new way to do elmo in TF2 Extracting ELMo features using tensorflow and convert them to numpy
Upvotes: 1