Reputation: 21
I am learning the OpenCV. Here is my code:
import cv2
face_patterns = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
sample_image = cv2.imread('1.jpg')
gray = cv2.cvtColor(sample_image,cv2.COLOR_RGB2GRAY)
faces = face_patterns.detectMultiScale(gray,1.3,5)
print(len(faces))
for (x, y, w, h) in faces:
cv2.rectangle(sample_image, (x, y), (x+w, y+h), (0, 255, 0), 2)
cv2.imwrite('result.jpg', sample_image)
If I use the picture A, I could get a lot of faces, if I use the picture B, I get none.
I changed argument in detectMultiScale(gray,1.3,5)
many times, it still doesn't work.
Upvotes: 1
Views: 410
Reputation: 11
It uses hog as default model. You can also use cnn for better accuracy but the detection process will be slow.
cascade_classifier = cv2.CascadeClassifier('haarcascades/haarcascade_eye.xml')
cap = cv2.VideoCapture(0)
while True:
# Capture frame-by-frame
ret, frame = cap.read()
# Our operations on the frame come here
gray = cv2.cvtColor(frame, 0)
detections = cascade_classifier.detectMultiScale(gray,scaleFactor=1.3,minNeighbors=5)
if(len(detections) > 0):
(x,y,w,h) = detections[0]
frame = cv2.rectangle(frame,(x,y),(x+w,y+h),(255,0,0),2)
# for (x,y,w,h) in detections:
# frame = cv2.rectangle(frame,(x,y),(x+w,y+h),(255,0,0),2)
# Display the resulting frame
cv2.imshow('frame',frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# When everything done, release the capture
cap.release()
cv2.destroyAllWindows()```
Upvotes: 0
Reputation: 195
Instead of -
faces = face_patterns.detectMultiScale(gray,1.3,5)
Try Using -
faces = face_patterns.detectMultiScale(blackandwhite,1.3,5)
If the problem occurs even after this check out my code for face detection.
Upvotes: 0
Reputation: 4875
I see this more as a problem of Cv2 module itself. There are better models than HAAR CASCADES for detecting faces. face_recognition library is also very useful to detect and recognize face. It uses hog as default model. You can also use cnn for better accuracy but the detection process will be slow.
Find more here.
import cv2
import face_recognition as fr
sample_image = fr.load_image_file("1.jpg")
unknown_face_loc = fr.face_locations(sample_image, model="hog")
print(len(unknown_face_loc)) #detected face count
for faceloc in unknown_face_loc:
y1, x2, y2, x1 = faceloc
cv2.rectangle(sample_image, (x1, y1), (x2, y2), (0, 0, 255), 2)
sample_image = sample_image[:, :, ::-1] #converting bgr image to rbg
cv2.imwrite("result.jpg", sample_image)
Upvotes: 1