Reputation: 13
This is my data
df <- data.frame (Var1 <- c("a", "b", "c","d","e","b","c","d","e","c","d","e","d","e","e"),
Var2 <- c("a","a","a","a","a","b","b","b","b","c","c","c","d","d","e")
pre <- c(1,2,3,4,5,1,6,7,8,1,9,10,1,11,1) )
I would like to build a symmetric matrix with Var1 and Var2 function as rownames and colnames, and the matrix values are the Corresponding number in "pre" in r, like this:
a b c d e
a 1 2 3 4 5
b 2 1 6 7 8
c 3 6 1 9 10
d 4 7 9 1 11
e 5 8 10 11 1
This seems to be an easy problem, but I have googled a lot of posts, but it has not been solved, so I come here to ask, thank you!
Mengying
Upvotes: 1
Views: 463
Reputation: 5788
Base R solution (using data provided by Ronak):
# Crosstab:
mdat <- as.data.frame.matrix(xtabs(pre ~ Var1 + Var2, df))
# Reflect on the diag (thanks @Ronak Shah):
mdat[upper.tri(mdat)] <- t(mdat)[upper.tri(mdat)]
As @ThomasIsCoding points as well we can use this one-liner:
xtabs(pre ~ ., unique(rbind(df, cbind(setNames(rev(df[-3]), names(df)[-3]), df[3] ))))
As @thelatemail points out we can also:
xtabs(pre ~ ., unique(data.frame(Map(c, df, df[c(2,1,3)]))))
Upvotes: 2
Reputation: 101337
Here is an option with igraph
package
g <- graph_from_data_frame(df,directed = FALSE)
E(g)$pre <- df$pre
get.adjacency(g,attr = "pre")
which gives
a b c d e
a 1 2 3 4 5
b 2 1 6 7 8
c 3 6 1 9 10
d 4 7 9 1 11
e 5 8 10 11 1
Upvotes: 2
Reputation: 2594
Here's a base R version:
df <- data.frame (Var1 = c("a", "b", "c","d","e","b","c","d","e","c","d","e","d","e","e"),
Var2 = c("a","a","a","a","a","b","b","b","b","c","c","c","d","d","e"),
pre = c(1,2,3,4,5,1,6,7,8,1,9,10,1,11,1))
# Generate new matrix/data frame
mat2 <- matrix(0, length(unique(df$Var1)), length(unique(df$Var2)))
# Name the columns and rows so we can access values
rownames(mat2) <- unique(df$Var1)
colnames(mat2) <- unique(df$Var2)
# Save values into appropriate places into data frame
mat2[as.matrix(df[, 1:2])] <- as.matrix(df[, 3])
# Using upper triangle trick from @Ronak Shah's answer
mat2[upper.tri(mat)] <- t(mat2)[upper.tri(mat2)]
# See results
mat2
# a b c d e
# a 1 2 3 4 5
# b 2 1 6 7 8
# c 3 6 1 9 10
# d 4 7 9 1 11
# e 5 8 10 11 1
Upvotes: 1
Reputation: 388982
You can get the data in wide format first.
library(dplyr)
library(tidyr)
mat <- df %>%
pivot_wider(names_from = Var2, values_from = pre, values_fill = 0) %>%
column_to_rownames('Var1') %>%
as.matrix()
mat
# a b c d e
#a 1 0 0 0 0
#b 2 1 0 0 0
#c 3 6 1 0 0
#d 4 7 9 1 0
#e 5 8 10 11 1
Since you have a symmetric matrix you can copy the lower triangular matrix to upper triangle.
mat[upper.tri(mat)] <- t(mat)[upper.tri(mat)]
mat
# a b c d e
#a 1 2 3 4 5
#b 2 1 6 7 8
#c 3 6 1 9 10
#d 4 7 9 1 11
#e 5 8 10 11 1
data
df <- data.frame (Var1 = c("a", "b", "c","d","e","b","c","d","e","c","d","e","d","e","e"),
Var2 = c("a","a","a","a","a","b","b","b","b","c","c","c","d","d","e"),
pre = c(1,2,3,4,5,1,6,7,8,1,9,10,1,11,1) )
Upvotes: 4