Reputation: 64
I have dataframe with unique identifier assigned based on three columns i.e., [col2,col3,col3]
Dataframe1:
col1 col2 col3 col4 col5 unique_id
1 abc bcv zxc www.com 8
2 bcd qwe rty www.@com 12
3 klp oiu ytr www.io 15
4 zxc qwe rty www.com 6
After data preprocessing, will import Dataframe_2 with same column values as shown above but without unique_id. Dataframe_2 rows must be assigned with unique identifier based on col2,col3,col4 and by referring to the Dataframe1.
If Dataframe_2 has new row which is not present in Dataframe1, then assign new identifier.
Dataframe_2:
col1 col2 col3 col4 col5
1 bcd qwe rty www.@com
2 zxc qwe rty www.com
3 abc bcv zxc www.com
4 kph hir mat www.com
Expected Dataframe_2:
col1 col2 col3 col4 col5 unique_id
1 bcd qwe rty www.@com 12
2 zxc qwe rty www.com 6
3 abc bcv zxc www.com 8
4 kph hir mat www.com 35
Since Row4 is not present in Dataframe1, a new unique identifier is assigned.
Upvotes: 0
Views: 676
Reputation: 862521
First add column unique_id
by DataFrame.merge
with left join on
parameter is omitted for merge by columns ['col2','col3','col4']
specified in subset. For not matched values are created missing values, so is used Series.isna
for test them and np.arange
for create new array after maximal value and assign them in DataFrame.loc
df = Dataframe_2.merge(Dataframe_1[['col2','col3','col4', 'unique_id']],
how='left')
mask = df['unique_id'].isna()
maximal = Dataframe_1['unique_id'].max() + 1
df.loc[mask, 'unique_id'] = np.arange(maximal, maximal + mask.sum())
df['unique_id'] = df['unique_id'].astype(int)
print (df)
col1 col2 col3 col4 col5 unique_id
0 1 bcd qwe rty www.@com 12
1 2 zxc qwe rty www.com 6
2 3 abc bcv zxc www.com 8
3 4 kph hir mat www.com 16
Upvotes: 0
Reputation: 4875
import math
import random
import pandas as pd
import numpy as np
df3 = pd.merge(df1,df2, on=['col2','col3','col4'], how='right')
def return_unique_num(df1):
uniqueIds = list(df1['unique_id'].values)
unique_num = random.randint(1,len(df1)+1)
while True:
if unique_num in uniqueIds:
unique_num = random.randint(1,len(df1)+1)
else:
break
return unique_num
for i, e in enumerate(df3['unique_id']):
if math.isnan(e):
df3.iloc[i, 5] = return_unique_num(df1) #replace nan value with unique integer in df3 unique_id column
df3['unique_id'] = df3['unique_id'].astype(int)
df2['unique_id'] = df3['unique_id']
It will assign unique IDs to df2 based on unique_id of df1
Output
col1 col2 col3 col4 col5 unique_id
1 bcd qwe rty www.@com 12
2 zxc qwe rty www.com 6
3 abc bcv zxc www.com 8
4 kph hir mat www.com 35
Upvotes: 0
Reputation: 5601
# assign the old unique_id
df2n = df2.join(df1.set_index(['col2', 'col3', 'col4', 'col5'])[['unique_id']],
on=['col2', 'col3', 'col4', 'col5'], how='left')
# assign new unique_id with max df1.unique_id + 1
id_max = df1.unique_id.max() + 1
null_num = df2n['unique_id'].isnull().sum()
cond = df2n['unique_id'].isnull()
df2n.loc[cond,'unique_id'] = range(id_max, id_max + null_num)
df2n['unique_id'] = df2n['unique_id'].astype(int)
print(df2n)
col1 col2 col3 col4 col5 unique_id
0 1 bcd qwe rty www.@com 12
1 2 zxc qwe rty www.com 6
2 3 abc bcv zxc www.com 8
3 4 kph hir mat www.com 16
Upvotes: 2