Reputation: 147
I want to solve automatically captchas like this one (all of them with red background and white letters) with Pytesseract
I have been trying processing image to make Pytesseract be able to read it, but no success. Would be great to receive your ideas to process this image. Here my code:
import cv2
import pytesseract
tessdata_dir_config = '--tessdata-dir "C:\\Program Files\\Tesseract-OCR\\tessdata"'
pytesseract.pytesseract.tesseract_cmd = 'C:\\Program Files\\Tesseract-OCR\\tesseract.exe'
img = cv2.imread("captcha.png")
img = cv2.resize(img, None, fx=2, fy=2)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
adaptive = cv2.adaptiveThreshold(
gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 85, 20)
print((pytesseract.image_to_string(img, config=tessdata_dir_config)).strip())
print((pytesseract.image_to_string(gray, config=tessdata_dir_config)).strip())
print((pytesseract.image_to_string(adaptive, config=tessdata_dir_config)).strip())
cv2.imshow("Captcha", img) # Output: IMQW
cv2.imshow("Gray", gray) # Output: IMOW
cv2.imshow("Adaptive", adaptive) # Output: IMOW,
cv2.waitKey(7000)
Upvotes: 0
Views: 15533
Reputation: 7985
I have a three-step solution
Step-1: Resize
Resizing the image enables the OCR-algorithm to detect the character or digit strokes in the input image.
Step-2: Closing
Closing is a morphological operation aims to remove the small-holes in the input image.
If we look carefully Q
and W
characters consists of lots of small holes.
Step-3: Threhsold
We will apply simple-threhsolding to binarize the image. Our aim to remove any leftover artifacts from the image.
Result:
IMQW
Code:
import cv2
from pytesseract import image_to_string
img = cv2.imread("QUfxY.png")
gry = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
(h, w) = gry.shape[:2]
gry = cv2.resize(gry, (w*2, h*2))
cls = cv2.morphologyEx(gry, cv2.MORPH_CLOSE, None)
thr = cv2.threshold(cls, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
txt = image_to_string(thr)
print(txt)
Upvotes: 12