Reputation: 395
Through using the ways and obtaining help from Stackoverflow users, I could find half of the solution and I need to complete it.
Through using Sympy I could produce my function parametrically and it became 100 different items similar to 0.03149536*exp(-4.56*s)*sin(2.33*s) 0.03446408*exp(-4.56*s)*sin(2.33*s)
. By using f = lambdify(s,f)
I converted it to a NumPy function and I needed to do integral of in the different
sthat I already have. The upper limit of the integral is a constant value and the lower limit must be done through a
for loop`.
When I try to do, I get some error which I post below. The code that I wrote is below, but for being a reproducible question I have to put a generated data. TypeError: cannot determine truth value of Relational
from sympy import exp, sin, symbols, integrate, lambdify
import pandas as pd
import matplotlib.pyplot as plt
from scipy import integrate
import numpy as np
S = np.linspace(0,1000,100)
C = np.linspace(0,1,100)
s, t = symbols('s t')
lanr = -4.56
lani = -2.33
ID = S[-1]
result=[]
f = C * exp(lanr * s) * sin (lani * s)
f = lambdify(s,f)
#vff = np.vectorize(f)
for i in (S):
I = integrate.quad(f,s,(i,ID))
result.append(I)
print(result)
EDIT
Sympy
by using just Scipy
and wrote the code below and again I could not solve the problem.from scipy.integrate import quad
import numpy as np
lanr = -6.55
lani = -4.22
def integrand(c,s):
return c * np.exp(lanr * s) * np.sin (lani * s)
def self_integrate(c,s):
return quad(integrand,s,1003,1200)
import pandas as pd
file = pd.read_csv('1-100.csv',sep="\s+",header=None)
s = np.linspace(0,1000,100)
c = np.linspace(0,1,100)
ID = s[-1]
for i in s:
I = self_integrate(integrand,c,s)
print(I)
and I got this TypeError: self_integrate() takes 2 positional arguments but 3 were given
Upvotes: 0
Views: 107
Reputation: 231385
Assuming you want to integrate over s
, and use c
as a fixed parameter (for a given quad
call), define:
In [198]: lanr = 1
...: lani = 2
...: def integrand(s, c):
...: return c * np.exp(lanr * s) * np.sin (lani * s)
...:
test it by itself:
In [199]: integrand(10,1.23)
Out[199]: 24734.0175253505
and test it in quad
:
In [200]: quad(integrand, 0, 10, args=(1.23,))
Out[200]: (524.9015616747192, 3.381048596651226e-08)
doing the same for a range of c
values:
In [201]: alist = []
...: for c in range(0,10):
...: x,y = quad(integrand, 0, 10, args=(c,))
...: alist.append(x)
...:
In [202]: alist
Out[202]:
[0.0,
426.74923713391905,
853.4984742678381,
1280.2477114017531,
1706.9969485356762,
2133.7461856695877,
2560.4954228035062,
2987.244659937424,
3413.9938970713524,
3840.743134205258]
From the quad
docs:
quad(func, a, b, args=(),...)
func : {function, scipy.LowLevelCallable}
A Python function or method to integrate. If `func` takes many
arguments, it is integrated along the axis corresponding to the
first argument.
and an example:
>>> f = lambda x,a : a*x
>>> y, err = integrate.quad(f, 0, 1, args=(1,))
The docs are a bit long, but the basics should be straight forward.
I was tempted to say you were stuck on the sympy
calling pattern, but the second argument for that is either the integration symbol, or a tuple.
>>> integrate(log(x), (x, 1, a))
a*log(a) - a + 1
So I'm puzzled as to why you were stuck on using
quad(integrand,s,1003,1200)
The s
, whether a sympy variable or a linspace array does not make sense.
Upvotes: 1