Vishvas Chauhan
Vishvas Chauhan

Reputation: 250

How to get closest date from today from multiple columns of a dataframe?

I need two col 1st one shows the closest date and 2nd one shows the name of the col

d = {'col1': ["id1","id2"] 'Stage 1': [26-01-2021, 04-01-2021],'Stage 2': [27-01-2021, 02-10-2025]}
df = pd.DataFrame(data=d)
df

image reference

Actual

enter image description here

Requirement

enter image description here

I tried

date=datetime.date.today()
idx = plc.index[df[['Stage 1','Stage 2']].index.get_loc(date, 
    method='nearest')]

Upvotes: 0

Views: 680

Answers (2)

RJ Adriaansen
RJ Adriaansen

Reputation: 9619

After converting the dates to datetime you can pass it to a function that populates both new columns in one go:

import pandas 
import datetime
d = {'col1': ["id1","id2"], 'Stage 1': ['26-01-2021', '04-01-2021'],'Stage 2': ['27-01-2021', '02-10-2025']}
df = pd.DataFrame(data=d)

df['Stage 1'] = pd.to_datetime(df['Stage 1'], format='%d-%m-%Y')
df['Stage 2'] = pd.to_datetime(df['Stage 2'], format='%d-%m-%Y')
date=pd.to_datetime(datetime.date.today())

def get_date(row):
    date_range = row[['Stage 1', 'Stage 2']]
    closest_date_key = abs(date - date_range).argmin()
    closest_date = date_range[closest_date_key]
    column_name = date_range.keys()[closest_date_key]
    return pd.Series((closest_date, column_name))

df[['Requirement 1', 'Requirement 2']] = df.apply(lambda row:get_date(row), axis=1)

Output:

|    | col1   | Stage 1             | Stage 2             | Requirement 1       | Requirement 2   |
|---:|:-------|:--------------------|:--------------------|:--------------------|:----------------|
|  0 | id1    | 2021-01-26 00:00:00 | 2021-01-27 00:00:00 | 2021-01-27 00:00:00 | Stage 2         |
|  1 | id2    | 2021-01-04 00:00:00 | 2025-10-02 00:00:00 | 2021-01-04 00:00:00 | Stage 1         |

Upvotes: 1

robbo
robbo

Reputation: 545

The following would get you there:

First convert your dates to datetimes so you can use them in comparison operations:

df['Stage 1'] = pd.to_datetime(df['Stage 1'])
df['Stage 2'] = pd.to_datetime(df['Stage 2'])

Then find the position of the closest date for example using:

closest = np.argmin([abs(df['Stage 1'].dt.date - date), 
                     abs(df['Stage 2'].dt.date - date)], axis=1)

And use these positions to get the names of your columns. You can assign that value in your first new column Requirement 1

df['Requirement 1'] = df.columns[-2:][closest]

You can then use the column name in Requirement 1 to get the original date that was closest:

df['Requirement 2'] = df.apply(lambda x: x[x['Requirement 1']].date(), axis=1)

My output looks then like:

  col1    Stage 1    Stage 2 Requirement 1 Requirement 2
0  id1 2021-01-26 2025-01-27       Stage 1    2021-01-26
1  id2 2025-04-01 2019-02-10       Stage 2    2019-02-10

Upvotes: 1

Related Questions